
CHA P T E R 1
A little Saturn PathFinder

We launched a pathfinder robot on Saturn and the communication with the
robot is difficult. To interact with this robot we send it orders in scripts from
Earth and the robot executes them. Energy and communication are limited so
we use a compact representation of scripts.

Your mission is to define different orders and functionalities such as replay,
way back home, and path optimizations.

Figure 1-1 A 2D space and a robot in ascii.

Doing this project you will learn the Command design pattern and delegation
to objects that encapsulate their behavior.

1

A little Saturn PathFinder

1.1 A robot in its space

A robot lives in a 2D space. It starts in a location. The following code snippet
is producing Figure 1-1.

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb x: 4 y: 1.
rb inspect

A board is composed of cells. Pay attention that a cell in the board only con-
tains one element: a ground tile or a robot. So when moving a robot to a cell
will ’erase’ the background. So when moving a robot should put back the pre-
vious tile.

atX:atY:
atX:at:y:put:

Board position:
setBoard:
character

Tile

move:
direction:
startLocation:
execute:

Robot Background

Figure 1-2 A minimal design.

1.2 Scripts

A robot receives a script as strings containing orders. The following test illus-
trates this.

• First a robot is created.

• Second a board is created. The robot is placed in the space.

• Third the robot can execute a script.

testExecute

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb x: 4 y: 1.
rb execute:

2

1.3 Getting the code

'dir #east
mov 2
mov 3
dir #north
mov 3'.

self assert: rb position equals: 9@4

The script contains different orders: such as mov 3, dir #north.

1.3 Getting the code

To help you develop this project we provide some core behavior. The robot
code is available at: https://github.com/pharo-mooc/AdvancedDesignMoocProjectCode.

• To start, load the baseline name RobotsProject, it contains the board
logic, and board tests in addition to basic behavior for tiles composing
the space. Note that this

• Once you define the class RbsRobot (for example in a package named
Robots) as a subclass of RbsAbstractRobot, load the package Robots-
Tests. It contains the tests for the behavior you will have to define.

1.4 Basic robot behavior

Define methods direction: and direction to define the direction of the
robot and initialize it for example to point to the east.

testRobotDefaultDirection

| rb |
rb := RbsRobot new.
self assert: rb direction equals: #east

1.5 Robot move

The first step is to implement orders such as mov, dir. Each order can be im-
plemented by defining a method such as move: aDistance and direction:.
Propose an implementation for these methods. Here is a possible test for the
move:.
testRobotMove

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb x: 4 y: 1.
"should make sure that previous tile is put back"

3

A little Saturn PathFinder

self assert: (rb board atX: 4 atY: 1) equals: rb.
rb move: 10.
self assert: (rb board atX: 14 atY: 1) equals: rb.
self deny: (rb board atX: 4 atY: 1) equals: rb

Pay attention that move: should put back the ground after moving.

To help you we propose to use the following method computeNewPosition:,
but there is a bug (it does not return a point). Write a couple of tests and fix
the method.
computeNewPosition: anInteger
"Returns a point representing the location of the next move."
^ direction = #east

ifTrue: [self x + anInteger]
ifFalse: [direction = #west

ifTrue: [self x - anInteger]
ifFalse: [direction = #north

ifTrue: [self y + anInteger]
ifFalse: [self y - anInteger].

]
]

The method move: now handles the fact that we put back the background
tile when moving the robot. But we were tired and there was a bug in that
method, fix it!

move: anInteger

| newPosition |
newPosition := self computeNewPosition: anInteger.
self previousTile position: newPosition.
previousTile := self board atPosition: newPosition.
self position: newPosition.

The following test should pass:

testRobotMovePreservesGround

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb x: 4 y: 1.
self assert: rb previousTile class equals: RbsGround.
self assert: rb previousTile x equals: 4.
rb move: 10.
self assert: (rb board atX: 4 atY: 1) class equals: RbsGround.
self assert: (rb board atX: 14 atY: 1) equals: rb.
self assert: rb previousTile position equals: 14@1

4

1.6 Sending order to robots

1.6 Sending order to robots

Now we are ready to implement the method execute: that will execute the
orders. The following helper method splits the script into line based orders.

RbsRobot >> identifyOrdersOf: aString

| orders |
orders := aString splitOn: Character cr.
orders := orders collect: [:each | each splitOn: Character space

].
^ orders

In addition you can use the following expression Object readFrom: aS-
tring to get the Pharo object represented by the string.

Object readFrom: '1'
> 1

Object readFrom: 'true'
> true

You should make the following test passes:

testExecute

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb x: 4 y: 1.
rb execute:

'dir #east
mov 2
mov 3
dir #north
mov 3'.

self assert: rb position equals: 9@4

1.7 Adding new orders

We propose now to introduce new orders.

Base

It was strange to not have the base position as part of the script so we pro-
pose to introduce a new order base taking two numbers as x and y.

base 10 20

5

A little Saturn PathFinder

Here is a test that should pass.

testStartPositionAsOrder

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb execute:

'base 4 1
dir #east
mov 2
mov 3
dir #north
mov 3'.
self assert: rb position equals: 9@4

Dropping an item

Introduce the possibility for the robot to drop an item on the map. Introduce
the class RbsItem with, for example, the character o as textual representa-
tion and handle the order in the execute: method.
dropL

1.8 Introducing commands

Imagine that you originally defined the execute: method as follows:

execute: aString

(self identifyOrdersOf: aString)
do: [:each |
each first = #mov

ifTrue: [self move: (Object readFrom: each second)]
ifFalse: [
each first = #dir ifTrue: [

self direction: (Object readFrom: each second)]]]

You certainly saw that adding a new order is tedious and make the condi-
tional statements more and more complex. This can get even more complex if
we want to implement a replay of the orders. We propose to use Commands.
Commands are objects representing actions.

Load the package named Robots-BasicCommands-Tests. It contains some
tests to help you creating commands.

6

1.8 Introducing commands

atX:atY:
atX:at:y:put:

Board position:
setBoard:
character

Tile

move:
direction:
startLocation:
execute:
executeCommand:

Robot

Background

handleArtguments:
printArguments:
executeOn:

Command

distance:
handleArguments:
executeOn:

MoveCommand

direction:
handleArguments:
executeOn:

DirectionCommand

Figure 1-3 A design with Command.

Command

Each command can have its own state and in addition its should know how to
execute itself and convert the order arguments into a Pharo object. Here is an
example for the RbsMoveCommand. What you see is that it has its own state,
an executeOn: method and a way to handle the arguments of the script.

RbsCommand << #RbsMoveCommand
slots: { #distance };
package: 'Robots'

RbsMoveCommand >> executeOn: aRobot
aRobot move: distance

RbsMoveCommand >> handleArguments: aCol
distance := Object readFrom: aCol first

Registering commands

We need a way to associate orders to commands. We do it by defining the
method commandName on the class side of the command class.
RbsMoveCommand class >> commandName

^ 'mov'

The robot class should have a way to map ’mov’ to the class of the command
Something like:

initializeCommandMapping

cmdMap := Dictionary new.
RbsCommand allSubclassesDo: [:each |

cmdMap at: each commandName put: each
]

7

A little Saturn PathFinder

that the executeCommandBased: aString should use when creating and
executing commands.

executeCommandBased: aString

(self identifyOrdersOf: aString) do: [:each |
((self commandClassFor: each first) new

handleArguments: each allButFirst; yourself) executeOn: self]

Implement all the commands so that the following test should pass.

testExecuteCommandBased

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb x: 4 y: 1.
rb executeCommandBased:

'dir #east
mov 2
mov 3
dir #north
mov 3'.
self assert: rb position equals: 9@4

1.9 Challenge: Replay

We would like to monitor what the robot is doing to be able to replay it. Load
the package Robots-Replay-Tests. Here is a typical script and we can re-
play it with another starting position.

testReplay

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb executeCommandBased:

'base 4 1'.
rb executeCommandBased:

'dir #east
mov 2
mov 3
dir #north
mov 3'.
self assert: rb position equals: 9@4.
rb x: 5 y: 1.
rb replay.
self assert: rb position equals: 10@4

8

1.9 Challenge: Replay

Let us imagine that the method execute commandBased: was implemented as

RbsRobot >> executeCommandBased: aString

(self identifyOrdersOf: aString) do: [:each |
((self commandClassFor: each first) new

handleArguments: each allButFirst; yourself) executeOn: self]

You should introduce a way to keep the created commands so that they can
be replayed. For example consider adding an instance variable path initial-
ized as an OrderedCollection and add commands when you create them in the
previous method.

Introduce new commands to control replay

Note that in the test above we used rb x:5 y: 1. instead of rb executeCom-
mandBased: 'base 5 1'. This is due to the fact that we cannot control
when the recording is starting and that we cannot reset it or stop it either.
We propose you to introduce the following commands: startM, stopM, restM,
and replay.

Add a new instance variable monitoring to the robot class and two methods
to control it as well as an initialization.
startMonitoring

monitoring := true

stopMonitoring
monitoring := false

The following test shows that we are registering stopM as a command. We
will fix that below.
testMonitoringIsOnPerDefault

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb executeCommandBased:

'base 5 1
dir #east
stopM
mov 3'.

self assert: rb path size equals: 3

The following test verifiess that once the monitoring is stopped and the path
reset, the path is empty

9

A little Saturn PathFinder

testReset

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb executeCommandBased:

'base 5 1
dir #east
stopM
resM
mov 3'.
self assert: rb path size equals: 0

1.10 Non recording commands

The following test may loop so pay attention because replay will replay the
sequence that will replay itself endlessly.

testReplayAsCommand

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb executeCommandBased:

'base 4 1'.
rb executeCommandBased:

'resM
dir #east
mov 2
mov 3
dir #north
mov 3'.
self assert: rb position equals: 9@4.

rb executeCommandBased: 'base 5 1
replay'.
self assert: rb position equals: 10@4

We could rely on the script programmer to always stop the monitoring be-
fore placing a replay order. But to have better security and avoid endless loop
because replay would be replaying itself, it is important that replay is not
added to the path of commands. The following test loops because the replay
order is causing itself to be kicked.

Propose one solution where replay is not added to the path. Such a solution
can be defined without any conditional by giving each command the respon-
sibility to add itself to the path.

10

1.10 Non recording commands

Instead of doing a conditional before adding the command the path, we can
just ask the command to add itself to the path of the robot. This way the re-
play command can ignore it. So introducing a hook in place of calling directly
the path addition (path addLast: cmd.) is a nice solution because each
command can define its own behavior.
executeCommandBased: aString

...
path addLast: cmd.
...

becomes
executeCommandBased: aString

...
cmd addToPathOf: self
...

This forces us to introduce a method named for example addToPath: in the
robot class to expose path addition. Once the corresponding logic is added
and used the following test will pass.

testAddToPathCommandsDoesNotContainReplay

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb executeCommandBased:

'base 5 1
dir #east
mov 3
replay'.

self assert: rb path size equals: 3

Once the command stop, start, reset and replay are not recorded any-
more the tests should be changed. For example testMonitoringIsOnPerDe-
fault checks that the path is now only containing two commands.

testMonitoringIsOnPerDefault

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb executeCommandBased:

'base 5 1
dir #east
stopM
mov 3'.

self assert: rb path size equals: 2

11

A little Saturn PathFinder

Now we are ready to use replay as an order. The following test verifies it.

testReplayAsCommand

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb executeCommandBased:

'base 4 1'.
rb executeCommandBased:

'resM
dir #east
mov 2
mov 3
dir #north
mov 3'.
self assert: rb position equals: 9@4.

rb executeCommandBased: 'stopM
base 5 1
replay'.
self assert: rb position equals: 10@4

1.11 Challenge: Automatic way back home

It can be tedious to bring back the robot to its location be inverting one by
one the orders that compose a script. We propose to enhance our robots with
a wayBack order. Load the package Robots-WayBack-Tests. A way back ac-
tion with take a list of commands and produce a new list of commands with
the opposite actions. Figure 1-4 illustrates the behavior:

When we have a simple path

dir #east
mov 5
dir #north
mov 3
dir #east
mov 4
wback

the robot should perform the following path back. We stressed that the direc-
tions should be inversed.
dir #east => west
mov 4
dir #north
mov 3
dir #east => west
mov 5

12

1.11 Challenge: Automatic way back home

What we see is that we should not only

• remove the way back order

• reverse the list

• but also convert direction in the opposite ones.

X X

X X

east mov

mov

mov
east

north X X

X X

mov

mov

mov
south

west

west

Figure 1-4 A simple path and a way back home.

Notice that multiple mov orders can be before a change direction as in the
equivalent path:

dir #east => west
mov 2
mov 2
dir #north
mov 1
mov 1
mov 1
dir #east => west
mov 5

A a first step we propose to introduce a simple message on the direction com-
mand class and the root of command.
RbsCommand >> asWayBack

^ self

Imagine the implementation for the direction commands.

testDirectionWyaBAck
| opposite |
opposite := (RbsDirectionCommand new direction: #east) asWayBack.
self assert: opposite direction equals: #west.
opposite := (RbsDirectionCommand new direction: #west) asWayBack.
self assert: opposite direction equals: #east.

To help you in this challenge we propose you to use the following method
ifCutOn: isSplitterBlock doWithCutAndUncuts: aTwoArgBlock fi-
nally: aBlock. If it is not available in Pharo, just define it on Sequence-
ableCollection. The following tests should illustrate clearly what the method
does.

13

A little Saturn PathFinder

testCut

| res |
res := OrderedCollection new.
#(2 2 #east 1 1 1 #north 5 #east 666)

ifCutOn: [:s | s isSymbol]
doWithCutAndUncuts: [:cut :before | res addLast: cut; addAll:
before]
finally: [:u | res addLast: u].

self assert: res equals: #(#east 2 2 #north 1 1 1 #east 5 666)
asOrderedCollection

SequenceableCollection >> ifCutOn: isSplitterBlock
doWithCutAndUncuts: aTwoArgBlock finally: aBlock

"Applies aTwoArgBlock (with current splitter objects and previous
unsplit objects) to the receiver. When uncuts are left executes
aBlock with them.

An optimised version could work with indexes to avoid creating
intermediate collections."

| uncuts cut current |
uncuts := OrderedCollection new.
1 to: self size do: [:i |

current := self at: i.
cut := isSplitterBlock value: current.
cut

ifFalse: [uncuts addLast: current]
ifTrue: [

aTwoArgBlock value: current value: uncuts.
uncuts := OrderedCollection new]].

uncuts isEmpty
ifFalse: [aBlock value: uncuts]

Extensions

• We could introduce a turn back message that given a command return
its opposite based on its previous state. Given a path sequence east mov
5 north mov 3 east mov 7 it would generate the sequence west mov 7
north mov 3 south mov 5...

1.12 Challenge: Path optimizations

This extension is about supporting path optimizations. Load the package
’Robots-Optimize-Tests. Let us imagine that the treatment of a
command is costly on Saturn. Then it can be better to optimize
the received script before executing it. Optimization can be

14

1.12 Challenge: Path optimizations

quite simple, indeed n mov‘ commands can be merged as a single move
command with the sum of the commands.

The following orders

move 10
move 20
move 5

can be replaced by a single one:

move 35

Several following direction commands can be merged as the last command.

The following sequence

dir #east
dir #south
dir #north

is optimized as

dir #north

We suggest the following design. Introduce a message aCommand merge-
With: anotherCommand that returns a list containing the situation after
trying to merge:

• When two commands can merge, returns a list containing the com-
mand resulting from the merge.

• When two commands do not merge, returns a list containing the two
original commands.

You can use double dispatch to determine how commands of different classes
are merged. As a default you can decide that different commands do not
merge.

RbsRobotTest >> testMergeMoveCommandsProducesTheSum

| cmdList |
cmdList := (RbsMoveCommand new distance: 10; yourself)

mergeWith: (RbsMoveCommand new distance: 10; yourself).
self assert: cmdList size equals: 1.
self assert: cmdList first distance equals: 20.

RbsRobotTest >> testMergeUNmergeableCommandsBecauseDifferent

| cmdList |
cmdList := (RbsMoveCommand new distance: 10; yourself)

mergeWith: (RbsDirectionCommand new direction: #east; yourself).
self assert: cmdList size equals: 2.
self assert: cmdList first distance equals: 10.

15

A little Saturn PathFinder

Once the merge semantics is in place you can use this logic to optimize full
paths as illustrated by the following test. Pay attention because this is a bit
tricky in particular since

mov 1
mov 2
mov 3
dir #east

leads to
mov 3
mov 3
dir #east

and then finally to

mov 6
dir #east

The following test should pass.

testOptimizeMergeThreeMovesAndOthers

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb x: 4 y: 1.
rb optimizePath:

'mov 2
mov 3
mov 4
dir #east'.
self

assert: (rb path collect: [:each | each printString])
equals: #('mov 9' 'dir #east')

Extensions

You can also add the fact that a mov 5 followed by a mov -5 does not produce
any command. Returning an empty list should be managed.

1.13 Extensions

Here is a list of extensions:

• The robot should be able to pick an item.

• It can have a certain capacity and cannot carry too many items.

16

1.14 Conclusion

• Passing a symbol to the direction is bad because the script developer
may mistype it and exposing the internal logic is a bad idea. Propose a
solution.

• The definition of the new location of a robot is based on a boring condi-
tional. Can you imagine a better way?

computeNewPosition: anInteger
"Returns a point representing the location of the next move."
^ direction = #east

ifTrue: [self x + anInteger]
ifFalse: [direction = #west

ifTrue: [self x - anInteger]
ifFalse: [direction = #north

ifTrue: [self y + anInteger]
ifFalse: [self y - anInteger].

]
]

To give you a hint, we could have a little hierarchy with direction and each
direction would decide the new location when told to compute it.

East computeFor: 4@1 distance: 10
> 14@1

1.14 Conclusion

This micro project shows you that representing actions as objects lets us ma-
nipulate programs at the right level of abstractions. Functionality as undo,
replay, or path optimizations are easier to develop using commands. In ad-
dition refraining from using conditions is interesting because it forces us to
delegate responsibilities to the objects and this makes your design more mod-
ular.

17

	A little Saturn PathFinder
	A robot in its space
	Scripts
	Getting the code
	Basic robot behavior
	Robot move
	Sending order to robots
	Adding new orders
	Base
	Dropping an item

	Introducing commands
	Command
	Registering commands

	Challenge: Replay
	Introduce new commands to control replay

	Non recording commands
	Challenge: Automatic way back home
	Extensions

	Challenge: Path optimizations
	Extensions

	Extensions
	Conclusion

