
CHA P T E R 1
Stone paper scissors

As we already saw sending a message is in fact making a choice. Indeed when
we send a message, the method associated with the method in the class hier-
archy of the receiver will be selected and executed.

Now we often have cases where we would like to select a method based on the
receiver of the message and one argument. Again there is a simple solution
named double dispatch that consists of sending another message to the argu-
ment hence making two choices one after the other.

This technique while simple can be challenging to grasp because program-
mers are so used to thinking that choices are made using explicit condition-
als. In this chapter, we will show an example of double dispatch via the paper-
stone-scissors game.

This exercise will show you an important paradigmatic shift where you will
go from asking questions (conditionals) to sending orders. It is a clear illus-
tration of the ’Don’t ask, Tell’ design principle.

ROCK PAPER

SCISSORS

Figure 1-1 Stone paper scissors.

1

Stone paper scissors

1.1 Starting with a couple of tests

We start by implementing a couple of tests. Let us define a test class named
StonePaperScissorsTest.
TestCase << #StonePaperScissorsTest
package: 'StonePaperScissors'

Now we can define a couple of tests showing for example that a paper is win-
ning when a stone plays against a paper. We consider that the following tests
are self-explanatory.

StonePaperScissorsTest >> testStoneAgainstPaperIsWinning
self assert: (Stone new play: Paper new) equals: #paper

StonePaperScissorsTest >> testScissorAgsinstPaperIsWinning
self assert: (Scissors new play: Paper new) equals: #scissors

StonePaperScissorsTest >> testStoneAgainsStone
self assert: (Stone new play: Stone new) equals: #draw

Define them because we will use the tests in the future.

1.2 Creating the classes

First, let us create the classes that will correspond to the different players.

Object << #Paper
package: 'StonePaperScissors'

Object << #Scissors
package: 'StonePaperScissors'

Object << #Stone
package: 'StonePaperScissors'

They could share a common superclass but we left it to you.

1.3 With messages

We are ready to make sure that the first test is passing. Let us work on test-
PaperIsWinning.
StonePaperScissorsTest >> testStoneAgainstPaperIsWinning
self assert: (Stone new play: Paper new) = #paper

The first method that we define is play: and it takes another player as an
argument.

Stone >> play: anotherTool
... Your code ...

2

1.3 With messages

To implement this method we will use the fact that we know when its body
is executed what is the receiver of the message. Here we are sure that the
receiver is an instance of the class Stone.

So let us imagine that we have another method named playAgainstStone:

In the class Paper, it is clear that the method should return #paper because a
paper wins against a stone. So just define it.

Paper >> playAgainstStone: aStone
... Your code ...

Now using the method playAgainstStone:, we can easily implement the
previous method play: in the class Stone.

Do it and the test should pass now.

playAgainstStone:

Since we have started to implement playAgainstStone:, let us continue and
implement two other methods one in the class Scissors and the other in the
class Stone.

In the class Scissors the method should return that a stone wins.
Scissors >> playAgainstStone: aStone

... Your code ...

In the class Stone, the method should return a draw.

Stone >> playAgainstStone: aStone
... Your code ...

Let us verify that the following tests are passing. For this, we only execute the
tests whose receiver of the play: message are stone instance.

First, we add a test to check the new scenario and now we have all the scenar-
ios where a stone is the receiver.
StonePaperScissorsTest >> testStoneAgainstScissorsIsWinning

self assert: (Stone new play: Scissors new) equals: #stone

StonePaperScissorsTest >> testStoneAgainsStone
self assert: (Stone new play: Stone new) equals: #draw

The case where a stone is the receiver of the message play is handled and we
can pass to another class, for example, Scissors.

Scissors now

Let us write first a test if this is already done. What we see is that a scissor is
winning against a paper.

3

Stone paper scissors

StonePaperScissorsTest >> testScissorIsWinning
self assert: (Scissors new play: Paper new) equals: #scissors

Now we are ready to define the corresponding methods. First, we define the
methods playAgainstScissors: in the corresponding classes.

Scissors >> playAgainstScissors: aScissors
... Your code ...

Paper >> playAgainstScissors: aScissors
... Your code ...

Stone >> playAgainstScissors: aScissors
... Your code ...

Now we are ready to we define the method play: in the class Scissors.
Scissors >> play: anotherTool
... Your code ...

You can define a couple of tests to make sure that your code is correct.

StonePaperScissorsTest >> testScissorAgainstStoneIsLosing
self assert: (Scissors new play: Stone new) equals: #stone

StonePaperScissorsTest >> testScissorAgainstScissors
self assert: (Scissors new play: Scissors new) equals: #draw

Paper now

We are now ready to do the same with the case of Paper. You should start to
see the pattern. Define the method playAgainstPaper: in their correspond-
ing classes.

Scissors >> playAgainstPaper: aPaper
... Your code ...

Paper >> playAgainstPaper: aPaper
... Your code ...

Stone >> playAgainstPaper: aPaper
... Your code ...

And now we can define the method play: in the Paper class.
Paper >> play: anotherTool
... Your code ...

Let us add more tests to cover the new cases.
StonePaperScissorsTest >> testPaperAgainstScissorIsLosing
self assert: (Paper new play: Scissor new) equals: #scissors

StonePaperScissorsTest >> testPaperAgainstStoneIsWinning
self assert: (Paper new play: Stone new) equals: #paper

4

1.4 About double dispatch

StonePaperScissorsTest >> testPaperAgainstPaper
self assert: (Paper new play: Paper new) equals: #draw

vs: anElement
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

Stone

vs:
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

SPSElement

vs: anElement
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

Paper
vs: anElement
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

Scissors

Figure 1-2 An overview of a possible solution using double dispatch.

The methods could return a value such as 1 when the receiver wins, 0 when
there is a draw and -1 when the receiver loses. Add new tests and check this
version.

1.4 About double dispatch

This exercise about double dispatch is really simple and it has two aspects
that you may not find in other situations:

First, it is symmetrical. You play a stone against a paper or the inverse. Not
all the double dispatches are symmetrical. For example, when drawing an ob-
ject against a canvas the operation for example drawOn: aCanva is directed.
It does not change much about the double dispatch but we wanted to make
clear that it does not have to be this way.

Second, the secondary methods (playAgainstXXX) do not use the argument
and this is because the example is super simple. In real-life examples, the
secondary methods do use the argument for example to call back behavior on
the argument. We will see this with the visitor design pattern.

1.5 A Better API

Both previous approaches either returning a symbol or a number are working
but we can ask ourselves how the client will use this code.

Most of the time he will have to check again the returned result to perform
some actions.
(aGameElement play: anotherGameElement) = 1

ifTrue: [do something for aGameElement]
(aGameElement play: anotherGameElement) = -1

5

Stone paper scissors

So all in all, while this was a good exercise to help you understand that we do
not need to have explicit conditionals and that we can use message passing
instead, it felt a bit disappointing.

But there is a much better solution using double dispatch. The idea is to pass
the action to be executed to the object and the object decides what to do.

Paper new competeWith: Paper new
onDraw: [Game incrementDraw]
onReceiverWin: []
onReceiverLose: []

Paper new competeWith: Stone new
onDraw: []
onReceiverWin: [Game incrementPaper]
onReceiverLose: []

Propose an implementation.

1.6 About alternative implementations

Here is a possible alternate implementation.

Paper >> play: anElement
onDraw: aDrawBlock
onWin: aWinBlock
onLose: aLoseBlock

^ anElement
playAgainstPaper: self
onDraw: aDrawBlock
onReceiverWin: aWinBlock
onReceiverLose: aLoseBlock

Paper >> playAgainstPaper: anElement
onDraw: aDrawBlock onReceiverWin:
aWinBlock
onReceiverLose: aLoseBlock
^ aDrawBlock value

What we see is that this new API is not that nice. Being forced to create blocks
is not that great. A possibility would be to pass an object that knows what to
do.
Paper new competeWith: Paper new
result: aResultHolder

Here is a sketch of a possible implementation:

Paper >> competeWith: anElement result: aResultHolder
^ anElement playAgainstPaper: self result: aResultHolder

6

1.7 Conclusion

We still have the double dispatch but we only need one object taking take of
the results.
Stone >> playAgainstPaper: anElement result: aResultHolder

aResultHolder paperWins

1.7 Conclusion

Sending a message is making a choice among several methods. Depending
on the receiver of a message the correct method will be selected. Therefore
sending a message is making a choice and the different classes represent the
possible alternatives.

Now this example illustrates this point but goes even further. Here we wanted
to be able to make a choice depending on both an object and the argument of
the message. The solution shows that it is enough to send back another mes-
sage to the argument to perform a second selection that because of the first
message now realizes a choice based on a message receiver and its argument.

7

	Stone paper scissors
	Starting with a couple of tests
	Creating the classes
	With messages
	playAgainstStone:
	Scissors now
	Paper now

	About double dispatch
	A Better API
	About alternative implementations
	Conclusion

