
CHA P T E R 11
A little expression interpreter

In this chapter, you will build a small mathematical expression interpreter.
For example, you will be able to build an expression such as (3 + 4) * 5 and
then ask the interpreter to compute its value. You will revisit tests, classes,
messages, methods, and inheritance. You will also see an example of expres-
sion trees similar to the ones that are used to manipulate programs. For ex-
ample, compilers and code refactorings as offered in Pharo and many modern
IDEs are doing such manipulation with trees representing code. In addition,
we will extend this example to present the Visitor Design Pattern.

11.1 Starting with constant expression and a test

We start with a constant expression. A constant expression is an expression
whose value is always the same, obviously.

Let us start by defining a test case class as follows:

TestCase << #EConstantTest
package: 'Expressions'

We decided to define one test case class per expression class and this even if
at the beginning the classes will not contain many tests. It is easier to define
new tests and navigate them.

Let us write a first test making sure that when we get a value, sending it the
evaluatemessage returns its value.

EConstantTest >> testEvaluate
self assert: (EConstant new value: 5) evaluate equals: 5

When you compile such a test method, the system should prompt you to get a
class EConstant defined. Let the system drive you. Since we need to store the

83



A little expression interpreter

value of a constant expression, let us add an instance variable value to the
class definition.

At the end you should have the following definition for the class EConstant.
Object << #EConstant
slots: {'value'};
package: 'Expressions'

We define the method value: to set the value of the instance variable value.
It is simply a method taking one argument and storing it in the value in-
stance variable.
EConstant >> value: anInteger
value := anInteger

You should define the method evaluate: it should return the value of the
constant.
EConstant >> evaluate
... Your code ...

Your test should pass.

11.2 Negation

Now we can start to work on expression negation. Let us write a test and for
this define a new test case class named ENegationTest.
TestCase << #ENegationTest
package: 'Expressions'

The test testEvaluate shows that a negation applies to an expression (here
a constant) and when we evalute we get the negated value of the constant.

ENegationTest >> testEvaluate
self assert: (ENegation new expression: (EConstant new value: 5))

evaluate equals: -5

Let us execute the test and let the system help us to define the class. A nega-
tion defines an instance variable to hold the expression that it negates.

Object << #ENegation
slots: { #expression };
package: 'Expressions'

We define a setter method to be able to set the expression under negation.

ENegation >> expression: anExpression
expression := anExpression

84



11.3 Adding expression addition

Now the evaluatemethod should request the evaluation of the expression
and negate it. To negate a number the Pharo library proposes the message
negated.
ENegation >> evaluate

... Your code ...

Figure 11-1 A flat collection of classes (with a suspect duplication).

Following the same principle, we will add expression addition and multiplica-
tion. Then we will make the system a bit more easy to manipulate and revisit
its first design.

11.3 Adding expression addition

To be able to do more than constant and negation we will add two extra ex-
pressions: addition and multiplication and after we will discuss about our
approach and see how we can improve it.

To add an expression that supports addition, we start to define a test case
class and a simple test.

TestCase << #EAdditionTest
package: 'Expressions'

A simple test for addition is to make sure that we add correctly two con-
stants.
EAdditionTest >> testEvaluate

| ep1 ep2 |
ep1 := (EConstant new value: 5).
ep2 := (EConstant new value: 3).
self assert: (EAddition new right: ep1; left: ep2) evaluate

equals: 8

You should define the class EAddition: it has two instance variables for the
two subexpressions it adds.

85



A little expression interpreter

EExpression << #EAddition
slots: { #left . #right};
package: 'Expressions'

Define the two corresponding setter methods right: and left:.

Now you can define the evaluatemethod for addition.

EAddition >> evaluate
... Your code ...

To make sure that our implementation is correct we can also test that we can
add negated expressions. It is always good to add tests that cover different
scenario.
EAdditionTest >> testEvaluateWithNegation
| ep1 ep2 |
ep1 := ENegation new expression: (EConstant new value: 5).
ep2 := (EConstant new value: 3).
self assert: (EAddition new right: ep1; left: ep2) evaluate

equals: -2

11.4 Multiplication

We do the same for multiplication: create a test case class named EMulti-
plicationTest, a test, a new class EMultiplication, a couple of setter
methods and finally a new evaluatemethod. Let us do it fast and without
much comments.
TestCase << #EMultiplicationTest
package: 'Expressions'

EMultiplicationTest >> testEvaluate
| ep1 ep2 |
ep1 := (EConstant new value: 5).
ep2 := (EConstant new value: 3).
self assert: (EMultiplication new right: ep1; left: ep2) evaluate

equals: 15

Object subclass: #EMultiplication
slots: { #left . #right};
package: 'Expressions'

EMultiplication >> right: anExpression
right := anExpression

EMultiplication >> left: anExpression
left := anExpression

EMultiplication >> evaluate
... Your code ...

86



11.5 Stepping back

11.5 Stepping back

It is interesting to look at what we built so far. We have a group of classes
whose instances can be combined to create complex expressions. Each ex-
pression is in fact a tree of subexpressions as shown in Figure 11-2. The fig-
ure shows two main trees: one for the constant expression 5 and one for the
expression -5 + 3. Note that the diagram represents the number 5 as an ob-
ject because in Pharo even small integers are objects in the same way the in-
stances of EConstant are objects.

anENegation 

anEAddition 

anEConstant 

5 

anEConstant 

5 

anEConstant 

3 

5

-5 + 3

expression

value

left

right
value

value

Figure 11-2 Expressions are composed of trees.

Messages and methods

The implementation of the evaluatemessage is worth discussing. What we
see is that different classes understand the same message but execute differ-
ent methods as shown in Figure 11-3.

Note A message represents an intent: it represents what should be done.
A method represents a specification of how something should be executed.

What we see is that sending a message evaluate to an expression is making
a choice among the different implementations of the message. This point is
central to object-oriented programming.

Note Sending a message is making a choice among all the methods with
the same name.

87



A little expression interpreter

About common superclass

So far we did not see the need to have an inheritance hierarchy because there
is not much to share or reuse. Now adding a common superclass would be
useful to convey to the reader of the code or a future extender of the library
that such concepts are related and are different variations of expression.

 

Object

value:
evaluate

value
Constant

left:
right:
evaluate

left 
right

Addition

expression:
evaluate

expression
Negation

left:
right:
evaluate

left 
right

Multiplication

evaluate
  ^ value     

evaluate
  ^ expression evaluate negated  

evaluate
  ^ right evaluate + left evaluate  

evaluate
  ^ right evaluate * left evaluate  

Figure 11-3 Evaluation: one message and multiple method implementations.

Design corner: About addition and multiplication model

We could have just one class called for example BinaryOperation and it can
have an operator and this operator will be either the addition or multiplica-
tion. This solution can work and as usual having a working program does not
mean that its design is any good.

In particular having a single class would force us to start to write conditional
based on the operator as follows

BinaryExpression >> evaluate
operator = #+

ifTrue: [ left evaluate + right evaluate ]
ifFalse: [ left evaluate * right evaluate]

There are ways in Pharo to make such code more compact but we do not want
to use it at this stage. For the interested reader, look for the message per-
form: that can execute a method based on its name.

This is annoying because the execution engine itself is made to select meth-
ods for us so we want to avoid to bypass it using explicit condition. In addi-
tion when we will add power, division, subtraction we will have to have more
cases in our condition making the code less readable and more fragile.

As we will see as a general message in this book, sending a message is mak-
ing a choice between different implementations. Now to be able to choose
we should have different implementations and this implies having different
classes.

88



11.6 Negated as a message

Note Classes represent choices whose methods can be selected during
message passing. Having more little classes is better than few large ones.

What we could do is to introduce a common superclass between EAddition
and EMultiplication but keep the two subclasses. We will probably do it in
the future

11.6 Negated as a message

Negating an expression is expressed in a verbose way. We have to create ex-
plicitly each time an instance of the class ENegation as shown in the follow-
ing snippet.

ENegation new expression: (EConstant new value: 5)

We propose to define a message negated on the expressions themselves that
will create such instance of ENegation. With this new message, the previous
expression can be reduced too.

(EConstant new value: 5) negated

negated message for constants

Let us write a test to make sure that we capture well what we want to get.

EConstantTest >> testNegated
self assert: (EConstant new value: 6) negated evaluate equals: -6

And now we can simply implement it as follows:

EConstant >> negated
^ ENegation new expression: self

negated message for negations

ENegationTest >> testNegationNegated
self assert: (EConstant new value: 6) negated negated evaluate

equals: 6

ENegation >> negated
^ ENegation new expression: self

This definition is not the best we can do since in general it is a bad practice to
hardcode the class usage inside the class. A better definition would be

ENegation >> negated
^ self class new expression: self

But for now we keep the first one for the sake of simplicity

89



A little expression interpreter

negated message for additions

We proceed similarly for additions.

EEAdditionTest >> testNegated
| ep1 ep2 |
ep1 := EConstant new value: 5.
ep2 := EConstant new value: 3.
self assert: (EAddition new right: ep1; left: ep2) negated

evaluate equals: -8

EAddition >> negated
... Your code ...

negated message for multiplications

We proceed similarly for multiplications.

EMultiplicationTest >> testEvaluateNegated
| ep1 ep2 |
ep1 := EConstant new value: 5.
ep2 := EConstant new value: 3.
self assert: (EMultiplication new right: ep1; left: ep2) negated

evaluate equals: -15

EMultiplication >> negated
... Your code ...

Now all your tests should pass. And it is a good moment to save your package.

11.7 Annoying repetition

Let us step back and look at what we have. We have a working situation but
again object-oriented design is to bring the code to a better level.

Similarly to the situation of the evaluatemessage and methods we see that
the functionality of negated is distributed over different classes. Now what
is annoying is that we repeat the exact same code over and over and this is
not good (see Figure 11-4). This is not good because if tomorrow we want to
change the behavior of negation we will have to change it four times while in
fact one time should be enough.

What are the solutions?

• We could define another class Negator that would do the job and each
current classes would delegate to it. But it does not really solve our
problem since we will have to duplicate all the message sends to call
Negator instances.

• If we define the method negated in the superclass (Object) we only
need one definition and it will work. Indeed, when we send the mes-

90



11.8 Introducing Expression class

 

Object

value:
evaluate
negated

value
Constant

left:
right:
evaluate
negated

left 
right

Addition

expression:
evaluate
negated

expression
Negation

left:
right:
evaluate
negated

left 
right

Multiplication

negated
  ^ ENegation new expression: self 

negated
  ^ ENegation new expression: self 

negated
  ^ ENegation new expression: self 

negated
  ^ ENegation new expression: self 

Figure 11-4 Code repetition is a bad smell.

sage negated to an instance of EConstant or EAddition the system
will not find it locally but in the superclass Object. So no need to de-
fine it four times but only one in class Object. This solution is nice
because it reduces the number of similar definitions of the method
negated but it is not good because even if in Pharo we can add methods
to the class Object this is not a good practice. Object is a class shared
by the entire system so we should take care not to add behavior only
making sense for a single application.

• The solution is to introduce a new superclass between our classes and
the class Object. It will have the same property than the solution with
Object but without poluting it (see Figure 11-5). This is what we do in
the next section.

11.8 Introducing Expression class

Let us introduce a new class to obtain the situation depicted by Figure 11-5.
We can simply do it by adding a new class:

Object << #EExpression
package: 'Expressions'

and changing all the previous definitions to inherit from EExpression in-
stead of Object. For example the class EConstant is then defined as follows.

EExpression << #EConstant
slots: { #value};
package: 'Expressions'

91



A little expression interpreter

Figure 11-5 Introducing a common superclass.

We can also use for the first transformation the class refactoring Insert super-
class. Refactorings are code transformations that do not change the behavior
of a program. You can find it under the refactorings list when you bring the
menu on the classes. Now it is only useful for the first changes.

Once the classes EConstant, ENegation, EAddition, and EMultiplication
are subclasses of EEXpression, we should focus on the method negated.
Now the method refactoring Push up will help us.

• Select the method negated in one of the classes

• Select the refactoring Push up

The system will define the method negated in the superclass (EExpression)
and remove all the negated methods in the classes. Now we obtain the situa-
tion described in Figure 11-5. It is a good moment to run all your tests again.
They should all pass.

Now you could think that we can introduce a new class named Arithmetic-
Expression as a superclass of EAddition and EMultiplication. Indeed this
is something that we could do to factor out common structure and behavior
between the two classes. We will do it later because this is basically just a rep-
etition of what we have done.

11.9 Class creation messages

Until now we always sent the message new to a class followed by a setter
method as shown below.
EConstant new value: 5

92



11.9 Class creation messages

We would like to take the opportunity to show that we can define simple
classmethods to improve the class instance creation interface. In this ex-
ample it is simple and the benefits are not that important but we think that
this is a nice example. With this in mind the previous example can now be
written as follows:
EConstant value: 5

Notice the important difference that in the first case the message is sent to
the newly created instance while in the second case it is sent to the class it-
self.

To define a class method is the same as to define an instance method (as we
did until now). The only difference is that using the code browser you should
click on the classSide button to indicate that you are defining a method that
should be executed in response to a message sent to a class itself.

Better instance creation for constants

Define the following method on the class EConstant. Notice the definition
now use EConstant class and not just EConstant to stress that we are
defining the class method.

EConstant class >> value: anInteger
^ self new value: anInteger

Now define a new test to make sure that our method works correctly.

EConstantTest >> testCreationWithClassCreationMessage
self assert: (EConstant value: 5) evaluate equals: 5

Better instance creation for negations

We do the same for the class ENegation.
ENegation class >> expression: anExpression

... Your code ...

We write of course a new test as follows:
ENegationTest >> testEvaluateWithClassCreationMessage

self assert: (ENegation expression: (EConstant value: 5)) evaluate
equals: -5

Better instance creation for additions

For the addition we add a class method named left:right: taking two argu-
ments
EAddition class >> left: anInteger right: anInteger2

^ self new left: anInteger ; right: anInteger2

93



A little expression interpreter

Of course, since we are test infested we add a new test.

EEAdditionTest >> testEvaluateWithClassCreationMessage
| ep1 ep2 |
ep1 := EConstant value: 5.
ep2 := EConstant value: 3.
self assert: (EAddition left: ep1 right: ep2) evaluate equals: 8

Better instance creation for multiplications

We let you do the same for the multiplication.

EMultiplication class >> left: anExp right: anExp2
... Your code ...

And another test to check that everything is ok.

EMultiplicationTest >> testEvaluateWithClassCreationMessage
| ep1 ep2 |
ep1 := EConstant new value: 5.
ep2 := EConstant new value: 3.
self assert: (EMultiplication new left: ep1; right: ep2) evaluate

equals: 15

Run your tests! They should all pass.

11.10 Introducing examples as class messages

As you saw when writing the tests, it is quite annoying to repeat all the time
the expressions to get a given tree. This is especially the case in the tests re-
lated to addition and multiplication as the one below:

EEAdditionTest >> testNegated
| ep1 ep2 |
ep1 := EConstant new value: 5.
ep2 := EConstant new value: 3.
self assert: (EAddition new right: ep1; left: ep2) negated

evaluate equals: -8

One simple solution is to define some class method returning typical in-
stances of their classes. To define a class method remember that you should
click the class side button.
EConstant class >> constant5
^ self new value: 5

EConstant class >> constant3
^ self new value: 3

This way we can define the test as follows:

94



11.11 Printing

EEAdditionTest >> testNegated
| ep1 ep2 |
ep1 := EConstant constant5.
ep2 := EConstant constant3.
self assert: (EAddition new right: ep1; left: ep2) negated

evaluate equals: -8

The tools in Pharo support such a practice. If we tag a class method with the
special annotation <sampleInstance> the browser will show a little icon
on the side and when we click on it, it will open an inspector on the new in-
stance.
EConstant class >> constant3

<sampleInstance>
^ self new value: 3

using the same idea we defined the following class methods to return some
examples of our classes.

EAddition class >> fivePlusThree
<sampleInstance>
| ep1 ep2 |
ep1 := EConstant new value: 5.
ep2 := EConstant new value: 3.
^ self new left: ep1 ; right: ep2

EMultiplication class >> fiveTimesThree
<sampleInstance>
| ep1 ep2 |
ep1 := EConstant constant5.
ep2 := EConstant constant3.
^ EMultiplication new left: ep1 ; right: ep2

What is nice about such examples is that

• they help to document the class by providing objects that we can di-
rectly use,

• they support the creation of tests by providing objects that can serve as
input for tests,

• they simplify the writing of tests.

So think about using them.

11.11 Printing

It is quite annoying that we cannot really see an expression when we inspect
it. We would like to get something better than 'aEConstant' and 'anEAd-
dition' when we debug our programs. To display such information the de-
bugger and inspector send to the objects the message printString which by
default just prefix the name of the class with ’an’ or ’a’.

95



A little expression interpreter

Let us change this situation. For this, we will specialize the method printOn:
aStream. The message printOn: is called on the object when a program or
the system send to the object the message printString. From that perspec-
tive printOn: is a system customization point that developers can take ad-
vantage to enhance their programming experience.

Note that we do not redefine the method printString because it is more
complex and printString is reused for all the objects in the system. We just
have to implement the part that is specific to a given class. In object-oriented
design jargon, printString is a template method in the sense that it sets up
a context that is shared by other objects and it hosts hook methods which are
program customization points. printOn: is a hook method. The term hook
comes from the fact that code of subclasses is invoked in the hook place (see
Figure 11-6).

The default definition of the method printOn: as defined on the class Ob-
ject is the following: it grabs the class name, checks if it starts with a vowel
or not and writes to the stream the ’a/an class’. This is why by default we got
'anEConstant' when we printed a constant expression.

Object >> printOn: aStream
"Append to the argument, aStream, a sequence of characters that
identifies the receiver."
| title |
title := self class name.
aStream

nextPutAll: (title first isVowel ifTrue: ['an '] ifFalse: ['a
']);
nextPutAll: title

A word about streams

A stream is a container for a sequence of objects. Once we get a stream we
can either read from it or write to it. In our case we will write to the stream.
Since the stream passed to printOn: is a stream expecting characters we will
add characters or strings (sequence of characters) to it. We will use the mes-
sages: nextPut: aCharacter and nextPutAll: aString. They add to the
stream the arguments at the next position and following. We will guide you
and it is simple. You can find more information on the chapter about Stream
in the book: Pharo by Example available at http://books.pharo.org

Printing constant

Let us start with a test. Here we check that a constant is printed as its value.

EConstantTest >> testPrinting
self assert: EConstant constant5 printString equals: '5'

96

http://books.pharo.org
http://books.pharo.org


11.11 Printing

printString
printOn:

Object

value:
evaluate
printOn:

value
Constant

left:
right:
evaluate
printOn:

left 
right

Addition

expression:
evaluate
printOn:

expression
Negation

left:
right:
evaluate
printOn:

left 
right

Multiplication

negated

Expression

printString
  ....
  .... self printOn: aStream
  .... 

printOn: aStream

    | title |
title := self class name.
aStream

nextPutAll: (title first isVowel ifTrue: ['an '] ifFalse: ['a ']);
nextPutAll: title

printOn: aStream

   aStream nextPutAll: value printString

printOn: aStream

   aStream nextPutAll: '- '.
aStream nextPutAll: expression printString

printOn: aStream

   ...                              

printOn: aStream

   ...                                

Figure 11-6 printOn: and printString a ”hooks and template” in action.

The implementation is then simple. We just need to put the value converted
as a string to the stream.

EConstant >> printOn: aStream
aStream nextPutAll: value printString

Printing negation

For a negation we should first put a ’-’ and then recurvisely call the print-
ing process on the negated expression. Remember that sending the message
printString to an expression should return its string representation. At
least until now it will work for constants.
(EConstant value: 6) printString
>>> '6'

Here is a possible definition

ENegation >> printOn: aStream
aStream nextPutAll: '- '
aStream nextPutAll: expression printString

By the way since all the messages are sent to the same object, this method
can be rewritten as:

97



A little expression interpreter

ENegation >> printOn: aStream
aStream

nextPutAll: '- ';
nextPutAll: expression printString

We can also define it as follows:
ENegation >> printOn: aStream
aStream nextPutAll: '- '.
expression printOn: aStream

The difference between the first solution and the alternate implementation
is the following: In the solution using printString, the system creates two
streams: one for each invocation of the message printString. One for print-
ing the expression and one for printing the negation. Once the first stream
is used the message printString converts the stream contents into a string
and this new string is put inside the second stream which at the end is con-
verted again as a string. So the first solution is not really efficient. With the
second solution, only one stream is created and each of the methods just
put the needed string elements inside. At the end of the process, the single
printStringmessage converts it into a string.

Printing addition

Now let us write yet another test for addition printing.

EAdditionTest >> testPrinting
self assert: (EAddition fivePlusThree) printString equals: '( 5 +

3 )'.
self assert: (EAddition fivePlusThree) negated printString equals:

'- ( 5 + 3 )'

Printing an addition is: put an open parenthesis, print the left expression,
put ’ + ’, print the right expression and put a closing parenthese in the stream.

EAddition >> printOn: aStream
... Your code ...

Printing multiplication

And now we do the same for multiplication.

EMultiplicationTest >> testPrinting
self assert: (EMultiplication fiveTimesThree) negated printString

equals: '- ( 5 * 3 )'

EMultiplication >> printOn: aStream
... Your code ...

98



11.12 Revisiting negated message for Negation

11.12 Revisiting negated message for Negation

Now we can go back to negating an expression. Our implementation is not
nice even if we can negate any expression and get the correct value. If you
look at it carefully negating a negation could be better. Printing a negated
negation illustrates well the problem: we get two minus operations instead of
none.
(EConstant value: 11) negated
>> '- 11'

(EConstant value: 11) negated negated
>> '- - 11'

A solution could be to change the printOn: definition and to check if the ex-
pression that is negated is a negation and in such case to not emit the minus.
Let us say it now, this solution is not nice because we do not want to write
code that depends on explicitly checking if an object is of a given class. Re-
member we want to send a message and let the object do some actions.

A good solution is to specialize the message negated so that when it is sent
to a negation it does not create a new negation that points to the receiver but
instead returns the expression itself, otherwise the method implemented in
EExpression will be executed. This way the trees created by a negatedmes-
sage can never have negated negation but the arithmetic values obtained are
correct. Let us implement this solution, we just need to implement a different
version of the method negated for ENegation.
Let us write a test! Since evaluating a single expression or a double negated
one gives the same results, we need to define a structural test. This is what
we do with the expression exp negated class = ENegation below.
NegationTest >> testNegatedStructureIsCorrect

| exp |
exp := EConstant value: 11.
self assert: exp negated class = ENegation.
self assert: exp negated negated equals: exp.

Now you should be able to implement the negatedmessage on ENegation.
ENegation >> negated

... Your code ...

Understanding method override

When we send a message to an object, the system looks for the corresponding
method in the class of the receiver then if it is not defined there, the lookup
continues in the superclass of the previous class.

By adding a method in the class ENegation, we created the situation shown
in Figure 11-7. We said that the message negated is overridden in ENegation

99



A little expression interpreter

because for instances of ENegation it hides the method defined in the super-
class EExpression.

It works the following:

• When we send the message negated to a constant, the message is not
found in the class EConstant and then it is looked up in the class EEx-
pression and it is found there and applied to the receiver (the instance
of EConstant).

• When we send the message negated to a negation, the message is found
in the class ENegation and executed on the negation expression.

Figure 11-7 The message negated is overridden in the class ENegation.

11.13 Introducing BinaryExpression class

Now we will take a moment to improve our first design. We will factor out the
behavior of EAddition and EMultiplication.
EExpression << #EBinaryExpression
package: 'Expressions'

EBinaryExpression << #EAddition
slots: { #left . #right'};
package: 'Expressions'

EBinaryExpression << #EMultiplication
slots: { #left . #right};
package: 'Expressions'

100



11.13 Introducing BinaryExpression class

Now we can use again a refactoring to pull up the instance variables left and
right, as well as the methods left: and right:.

Select the class EMuplication, bring the menu, and select in the Refactoring
menu the instance variables refactoring Push Up. Then select the instance
variables.

Now you should get the following class definitions, where the instance vari-
ables are defined in the new class and removed from the two subclasses.
EExpression << #EBinaryExpression

slots: { #left . #right };
package: 'Expressions'

EBinaryExpression << #EAddition
package: 'Expressions'

EBinaryExpression << #EMultiplication
package: 'Expressions'

We should get a situation similar to the one in Figure 11-8. All your tests
should still pass.

Figure 11-8 Factoring instance variables.

Now we can move the same way the methods. Select the method left: and
apply the refactoring Pull Up Method. Do the same for the method right:.

Creating a template and hook method

Now we can look at the methods printOn: of additions and multiplications.
They are really similar: Just the operator is changing. Now we cannot sim-
ply copy one of the definitions because it will not work for the other. But

101



A little expression interpreter

what we can do is apply the same design point that was implemented for
printString and printOn:: we can create a template and hooks that will
be specialized in the subclasses.

We will use the method printOn: as a template with a hook redefined in
each subclass.

Let define the method printOn: in EBinaryExpression and remove the
other ones from the two classes EAddition and EMultiplication.
EBinaryExpression >> printOn: aStream
aStream nextPutAll: '( '.
left printOn: aStream.
aStream nextPutAll: ' + '.
right printOn: aStream.
aStream nextPutAll: ' )'

Then you can do it manually or use the Extract Method Refactoring: This refac-
toring creates a new method from a part of an existing method and sends a
message to the new created method: select the ’ + ’ inside the method pane
and bring the menu and select the Extract Method refactoring, and when
prompt gives the name operatorString.

Here is the result you should get:

EBinaryExpression >> printOn: aStream
aStream nextPutAll: '( '.
left printOn: aStream.
aStream nextPutAll: self operatorString.
right printOn: aStream.
aStream nextPutAll: ' )'

EBinaryExpression >> operatorString
^ ' + '

Now we can just redefine this method in the EMultiplication class to re-
turn the adequate string.

EMultiplication >> operatorString
^ ' * '

11.14 What did we learn

The introduction of the class EBinaryExpression is a rich experience in
terms of lessons that we can learn.

• Refactorings are more than simple code transformations. Usually, refac-
torings pay attention that their application does not change the behav-
ior of programs. As we saw refactorings are powerful operations that
really help doing complex operations in a few actions.

102



11.15 About hook methods

Figure 11-9 Factoring instance variables and behavior.

• We saw that the introduction of a new superclass and moving instance
variables or methods to a superclass does not change the structure or
behavior of the subclasses. This is because (1) for the state, the struc-
ture of an instance is based on the state of its class and all its super-
classes, (2) the lookup starts in the class of the receiver and looks in
superclasses.

• While the method printOn: is by itself a hook for the method printString,
it can also play the role of a template method. The method opera-
torString reuses the context created by the printOn: method which
acts as a template method. In fact, each time we do a self-send we cre-
ate a hook method that subclasses can specialize.

11.15 About hook methods

When we introduced EBinaryExpression we defined the method opera-
torString as follows:
EBinaryExpression >> operatorString

^ ' + '

EMultiplication >> operatorString
^ ' * '

And you may wonder if it was worth to create a new method in the superclass
and so that such one subclass redefines it.

Creating hooks is always good

First creating a hook is also a good idea. Because you rarely know how your
system will be extended in the future. On this little example, we suggest you

103



A little expression interpreter

to add raising to power, division and this can be done with one class and two
methods per new operator.

Avoid not documenting hooks

Second, we could have just defined one method operatorString in each sub-
class and no method in the superclass EBinaryExpression. It would have
worked because EBinaryExpression is not meant to have direct instances.
Therefore there is no risk that a printOn: message is sent to one of its in-
stances and causes an error because no method operatorString is found.
The code would have looked like the following:

EAddition >> operatorString
^ ' + '

EMultiplication >> operatorString
^ ' * '

value:
evaluate
printOn:

value
Constant

evaluate
operatorString

Additionexpression:
evaluate
printOn:

expression
Negation

evaluate
operatorString

Multiplication

negated

Expression

left:
right:
printOn:
operatorString

left 
right

Binary
Expression

operatorString

   ^ self subclassResponsibility  

operatorString

   ^ ' + '                 

operatorString

   ^ ' * '                 

Figure 11-10 Better design: Declaring an abstract method as a way to document
a hook method.

Now such design is not really good because as a potential extender of the
code, developers will have to guess reading the subclass definitions that they
should also define a method operatorString. A much better solution in that
case is to define what we can an abstract method in the superclass as follows:

EBinaryExpression >> operatorString
^ self subclassResponsibility

Using the message subclassResponsibility declares that a method is
abstract and that subclasses should redefine it explicitly. Using such an ap-
proach we get the final situation represented in Figure 11-10.

In the solution presented before (section 11.13) we decided to go for the sim-
plest solution and it was to use one of the default value (’ + ’) as a default defi-

104



11.16 Variables

nition for the hook in the superclass EExpression. It was not a good solution
and we did it on purpose to be able to have this discussion. It was not a good
solution since it was using a specific subclass. It is better to define a default
value for a hook in the superclass when this default value makes sense in the
class itself.

Note that we could also define evaluate as an abstract method in EExpres-
sion to indicate clearly that each subclass should define an evaluate.

11.16 Variables

Up until now our mathematical expressions are rather limited. We only ma-
nipulate constant-based expressions. What we would like is to be able to ma-
nipulate variables too. Here is a simple test to show what we mean: we define
a variable named 'x' and then we can later specify that 'x' should take a
given value.

Let us create a new test class named EVariableTest and define a first test
testValueOfx.
EVariableTest >> testValueOfx

self assert: ((EVariable new id: #x) evaluateWith: {#x -> 10}
asDictionary) equals: 10.

Some technical points

Let us explain a bit what we are doing with the expression {#x -> 10} as-
Dictionary. We should be able to specify that a given variable name is as-
sociated with a given value. For this we create a dictionary: a dictionary is a
data structure for storing keys and their associated value. Here a key is the
variable and the value its associated value. Let us present some details first.

Dictionaries

A dictionary is a data structure containing pairs (key value) and we can access
the value of a given key. It can use any object as key and any object as values.
Here we simply use a symbol #x since symbols are unique within the system
and as such we are sure that we cannot have two keys looking the same but
having different values.

| d |
d := Dictionary new

at: #x put: 33;
at: #y put: 52;
at: #z put: 98.

d at: y
>>> 52

105



A little expression interpreter

The previous dictionary can be easily expressed more compactly using {#x
-> 33 . #y -> 52 . #z -> 98} asDictionary.
{#x -> 33 . #y -> 52 . #z -> 98} asDictionary at: #y
>>> 52

Dynamic Arrays

The expression { } creates a dynamic array. Dynamic arrays executes their
expressions and store the resulting values.

{2 + 3 . 6 - 2 . 7-2 }
>>> ==#(5 4 5)==

Pairs

The expression #x -> 10 creates a pair with a key and a value.

| p |
p := #x -> 10.
p key
>>> #x
p value
>>> 10

Back to variable expressions

If we go a step further, we want to be able to build more complex expressions
where instead of having constants we can manipulate variables. This way we
will be able to build more advanced behavior such as expression derivations.

EExpression << #EVariable
slots: { #id};
package: 'Expressions'

EVariable >> id: aSymbol
id := aSymbol

EVariable >> printOn: aStream
aStream nextPutAll: id asString

What we see is that we need to be able to pass bindings (a binding is a pair
key, value) when evaluating a variable. The value of a variable is the value of
the binding whose key is the name of the variable.

EVariable >> evaluateWith: aBindingDictionary
^ aBindingDictionary at: id

Your tests should all pass at this point.

For more complex expressions (the ones that interest us) here are two tests.

106



11.16 Variables

EVariableTest >> testValueOfxInNegation
self assert: ((EVariable new id: #x) negated

evaluateWith: {#x -> 10} asDictionary) equals: -10

What the second test shows is that we can have an expression and given a
different set of bindings the value of the expression will differ.

EVariableTest >> testEvaluateXplusY
| ep1 ep2 add |
ep1 := EVariable new id: #x.
ep2 := EVariable new id: #y.
add := EAddition left: ep1 right: ep2.

self assert: (add evaluateWith: { #x -> 10 . #y -> 2 }
asDictionary) equals: 12.

self assert: (add evaluateWith: { #x -> 10 . #y -> 12 }
asDictionary) equals: 22

Non working approaches

A non working solution would be to add the following method to EExpres-
sion
EEXpression >> evaluateWith: aDictionary

^ self evaluate

However, it does not work for at least the following reasons:

• It does not use its argument. It only works for trees composed exclu-
sively of constant.

• When we send a message evaluateWith: to an addition, this mes-
sage is then turned into an evaluatemessage sent to its subexpression
and such subexpression do not get an evaluateWith: message but an
evaluate.

Alternatively we could add the binding to the variable itself and only provide
an evaluatemessage as follows:

(EVariable new id: #x) bindings: { #x -> 10 . #y -> 2 } asDictionary

But it fully defeats the purpose of what a variable is. We should be able to
give different values to a variable embedded inside a complex expression.

The solution: adding evaluateWith:

We should transform all the implementations and message sends from eval-
uate to evaluateWith: Since this is a tedious task we will use the method
refactoring Add Parameter. Since a refactoring applies itself to the complete
system, we should be a bit cautious because other Pharo classes implement
methods named evaluate and we do not want to impact them.

107



A little expression interpreter

So here are the steps that we should follow.

• Select the Expression package

• Choose Browse Scoped (it brings a browser with only your package)

• Using this browser, select a method evaluate

• Select the Add Parameter refactoring: type evaluateWith: as the method
selector and proceed when prompted for a default value Dictionary
new. This last expression is needed because the engine will rewrite all
the messages evaluate but evaluateWith: Dictionary new.

• The system is performing many changes. Check that they only touch
your classes and accept them all.

A test like the following one:

EConstant >> testEvaluate
self assert: (EConstant constant5) evaluate equals: 5

is transformed as follows:
EConstant >> testEvaluate
self assert: ((EConstant constant5) evaluateWith: Dictionary new)

equals: 5

Your tests should nearly all pass except the ones on variables. Why do they
fail? Because the refactoring transformed message sends evaluate but eval-
uateWith: Dictionary new and this even in methods evaluate.
EAddition >> evaluateWith: anObject
^ (right evaluateWith: Dictionary new) + (left evaluateWith:

Dictionary new)

This method should be transformed as follows: We should pass the binding to
the argument of the evaluateWith: recursive calls.

EAddition >> evaluateWith: anObject
^ (right evaluateWith: anObject) + (left evaluateWith: anObject)

Do the same for the multiplications.

ENegation >> evaluateWith: anObject
^ (expression evaluateWith: anObject) negated

Figure 11-11 shows the final situation.

11.17 Conclusion

This little exercise was full of learning potential. Here is a little summary of
what we explained and we hope you understood.

108



11.17 Conclusion

value:
printOn:
evaluateWith:

value
Constant

operatorString
evaluateWith:

Addition

expression:
printOn:
evaluateWith:

expression
Negation

operatorString
evaluateWith:

Multiplication

negated

Expression

left:
right:
printOn:
operatorString

left 
right

Binary
Expression

printOn:
evaluateWith:

id
Variable

Figure 11-11 Variables and their evaluation.

• A message specifies an intent while a method is a named list of execu-
tion. We often have one message and a list of methods with the same
name.

• Sending a message is finding the method corresponding to the mes-
sage selector: this selection is based on the class of the object receiving
the message. When we look for a method we start in the class of the
receiver and go up the inheritance link.

• Tests are a really nice way to specify what we want to achieve and then
to verify after each change that we did not break something. Tests do
not prevent bugs but they help us build confidence in the changes we
make by identifying fast errors.

• Refactorings are more than simple code transformations. Usually refac-
torings pay attention to their application does not change the behavior
of program. As we saw refactorings are powerful operations that really
help do complex operations in a few action.

• We saw that the introduction of a new superclass and moving instance
variables or methods to a superclass does not change the structure or
behavior of the subclasses. This is because (1) for the state, the struc-
ture of an instance is based on the state of its class and all its super-
classes, (2) the lookup starts in the class of the receiver and look in su-
perclasses.

• Each time we send a message, we create a potential place (a hook) for
subclasses to get their code definition used in place of the superclass’s
one.

109


	Introduction
	Module Exercises
	Default flow
	Exercises proposition per Module
	Module 1.
	Module 2.
	Module 3.
	Module 4.
	Module 5.
	Module 6.
	Module 7, 8, 9, 10.


	Teacher corner
	About Pharo and Moocs
	A truly excellent and pedagogical language
	Some testimonies
	In french
	In English

	Conclusion

	Lectures
	Possible pedagogical objectives
	Lecture: Essence of OO design from 1/2 to 1 day
	Lecture: Pharo in 1 day
	Lecture: Basic OOP in 1/2 to 1 day
	Lecture: Pharo and Object-oriented design in 2 days
	Lecture: Advanced object-oriented design lecture example
	Setup
	Calendar

	Conclusion


	Guided Exercices
	A basic LAN application
	Creating the class LNNode
	Exercise: Create a new package SimpleLAN
	Exercise: Create a Test class
	Exercise: Class creation
	Exercise: Accessors
	Exercise: Define the method hasNextNode

	Sending/receiving packets
	A little example.

	Better printString
	Creating the class LNPacket
	Exercise: defining class LNPacket
	Exercise: Adding isAddressedTo:
	Exercise: adding a printOn: method

	Creating the class LNWorkstation
	Exercise: Define LNWorkstation
	Exercise: Redefining the method accept:
	About good design.

	Exercise: Defining the method emit:

	Creating the class LNPrinter
	Illustrating scenario

	Simulating the LAN
	Conclusion

	Crafting a simple embedded DSL with Pharo
	Getting started
	Create a test
	Define the class Die

	Rolling a die
	Creating another test
	Instance creation interface
	Defining a class method
	[Optional] Alternate instance creation definition

	First specification of a die handle
	Testing a die handle

	Defining the DieHandle class
	Improving programmer experience
	Optimization Remark.

	Rolling a die handle
	About Dice and DieHandle API
	About composition

	Handle's addition
	Role-playing syntax
	About class extensions

	Conclusion

	Stone paper scissors
	Starting with a couple of tests
	Creating the classes
	With messages
	playAgainstStone:
	Scissors now
	Paper now

	About double dispatch
	A Better API
	About alternative implementations
	Conclusion

	Revisiting the Die DSL: a case for double dispatch
	A little reminder
	[Optional] Alternate way
	New requirements
	Turning requirements into tests
	Introducing faces on DieHandle
	The first implementation
	Sketching double dispatch
	Adding two dice
	Adding a die and a die or a handle
	When the argument is a die handle
	Stepping back
	Now a DieHandle as receiver
	sumWithHandle: on Die class
	Conclusion

	A little Saturn PathFinder
	A robot in its space
	Scripts
	Getting the code
	Basic robot behavior
	Robot move
	Sending order to robots
	Adding new orders
	Base
	Dropping an item

	Introducing commands
	Command
	Registering commands

	Challenge: Replay
	Introduce new commands to control replay

	Non recording commands
	Challenge: Automatic way back home
	Extensions

	Challenge: Path optimizations
	Extensions

	Extensions
	Conclusion

	Finding the North with Compass
	Existing situation
	Computing new position based on a direction.
	Opposite direction

	Representing directions
	New position at a given distance

	Introducing NorthWest, SouthEast, and friends

	A little expression interpreter
	Starting with constant expression and a test
	Negation
	Adding expression addition
	Multiplication
	Stepping back
	Messages and methods
	About common superclass
	Design corner: About addition and multiplication model

	Negated as a message
	negated message for constants
	negated message for negations
	negated message for additions
	negated message for multiplications

	Annoying repetition
	Introducing Expression class
	Class creation messages
	Better instance creation for constants
	Better instance creation for negations
	Better instance creation for additions
	Better instance creation for multiplications

	Introducing examples as class messages
	Printing
	A word about streams
	Printing constant
	Printing negation
	Printing addition
	Printing multiplication

	Revisiting negated message for Negation
	Understanding method override

	Introducing BinaryExpression class
	Creating a template and hook method

	What did we learn
	About hook methods
	Creating hooks is always good
	Avoid not documenting hooks

	Variables
	Some technical points
	Dictionaries
	Dynamic Arrays
	Pairs

	Back to variable expressions
	Non working approaches
	The solution: adding evaluateWith:

	Conclusion

	Understanding visitors
	Existing situation: expression trees
	Visitor's key principle
	Introducing an evaluating Visitor
	Defining the visitor class
	Adding a test class

	Now handling addition
	Adding a new test
	Defining visitAddition:

	Supporting negation
	Defining visitNegation:
	Again redefining evaluateWith:

	Supporting Multiplication
	Adding a test
	Defining the accept: method
	Defining the visitMultiplication

	Supporting Division
	First two tests
	Improving the creation API
	Defining accept:
	Defining the visitDivision:

	Moving up evaluateWith:
	Supporting variables
	Extending the visitor state
	Visiting a variable

	Redefine evaluateWith:
	A new visitor
	Defining a new visitor

	Visiting methods
	Conclusion


	Unguided exercises
	Tamagotchi Mechanics
	Problem Context
	Behavior
	Eating.
	Playing Alone.
	Playing With Other Pets.

	Extensions
	Dog.
	Lonely Cat.

	Tests
	About behavior description

	Civilization
	General Rules
	Defending Unit Damage Formula
	Defending Unit Damage (Dd).
	Attacking Unit Power (Ap).
	Defending / Attacking Unit Types Combination Modifier (Atm).
	Defending Unit Terrain Impact (Dti).

	Attacking Unit Damage Formula
	tacking Unit Damage (Ad).
	Defending Unit Power (Dp).
	Defending / Attacking Unit Types Combination Modifier (Dtm).
	Attacking Unit Terrain Impact (Ati).

	Units
	Warrior.
	Archer.
	Pikeman.
	Knight.

	Terrains
	Flat Terrain.
	Hilly Terrain.

	Tests

	Little unguided projects
	LAN simulator
	Loading LAN code.
	LAN extensions
	Hook for accept
	Understanding execution flow
	Star node
	Avoiding some conditions.
	Trottling node
	Handling loops
	Limited packet distance
	Different kinds of packets
	Signing node

	Die players
	Kind of players
	Different kinds of die
	Pairs of player and die

	About the die DSL
	About Visitors


	Unguided Projects
	Designing little board games
	Support
	Loading Myg and Bloc
	Bloc
	Possible Games
	Other resources
	Some generic extensions
	Minesweeper
	Free cell declaration:
	Bomb declaration:
	Specific extensions:


	Flood it
	Specific extensions:

	Tetris and variations
	Specific extensions
	Specific extensions


	2048
	Specific extensions

	Memory
	Specific extensions

	SlideOut
	Laser game
	Same game
	Nonogram
	Conclusion

	Microdown miniprojects
	Loading
	Getting started
	Model
	From text to objects
	Programmatically writing a textual document

	Table of contents
	Generating a plain text TOC
	Controlling the level
	Showing numbers
	Producing Microdown

	Blog and its posts
	Link checker
	Book Sanitizer
	Guideline sample
	Job

	Automatic Numbering
	Rendered math downloader
	Better contents encoding




