
CHA P T E R 11
Crafting a simple embedded DSL

with Pharo

In this chapter, you will develop a simple domain-specific language (DSL) for
rolling dice. Players of games such as Dungeons & Dragons are familiar with
such DSL. An example of such DSL is the following expression: 2 D20 + 1
D6 which means that we should roll two 20-face dices and one 6-face die. It is
called an embedded DSL because the DSL uses the syntax of the language used
to implement it. Here we use the Pharo syntax to implement the Dungeons &
Dragons rolling die language.

This little exercise shows how we can (1) simply reuse traditional operators
such as +, (2) develop an embedded domain-specific language, and (3) use class
extensions (the fact that we can define a method in another package than the
one of the class of the method).

11.1 Getting started

Using the code browser, define a package named Dice or any name you like.

Create a test

It is always empowering to verify that the code we write is always working as
we defining it. For this purpose you should create a unit test. Remember unit
testing was promoted by K. Beck first in the ancestor of Pharo. Nowadays this
is a common practice but this is always useful to remember our roots!

125

Crafting a simple embedded DSL with Pharo

Define the class DieTest as a subclass of TestCase as follows:
TestCase << #DieTest

package: 'Dice'

What we can test is that the default number of faces of a die is 6.
DieTest >> testInitializeIsOk

self assert: Die new faces equals: 6

If you execute the test, the system will prompt you to create a class Die. Do it.

Define the class Die

The class Die inherits from Object and it has an instance variable, faces to
represent the number of faces one instance will have. Figure 11-1 gives an
overview of the messages.

faces:
roll
withFaces:

faces
Die

Figure 11-1 A single class with a couple of messages. Note that the method with-
Faces: is a class method.

Object subclass:
... Your solution ...

In the initialization protocol, define the method initialize so that it
simply sets the default number of faces to 6.

Die >> initialize
... Your solution ...

Do not hesitate to add a class comment.

Now define a method to return the number of faces an instance of Die has.
Die >> faces

^ faces

Now your tests should all pass (and turn green).

126

11.2 Rolling a die

11.2 Rolling a die

To roll a die you should use the method from Number atRandom which draws
randomly a number between one and the receiver. For example 10 atRandom
draws number between 1 to 10. Therefore we define the method roll:
Die >> roll

... Your solution ...

Now we can create an instance Die new and send it the message roll and get
a result. Do Die new inspect to get an inspector and then type in the bottom
pane self roll. You should get an inspector like the one shown in Figure 11-
2. With it you can interact with a die by writing expression in the bottom pane.

Figure 11-2 Inspecting and interacting with a die.

11.3 Creating another test

But better, let us define a test that verifies that rolling a new created dice with
a default 6 faces only returns value comprised between 1 and 6. This is what
the following test method is actually specifying.

DieTest >> testRolling
| d |
d := Die new.
10 timesRepeat: [self assert: (d roll between: 1 and: 6)]

Important Often it is better to define the test even before the code it tests.
Why? Because you can think about the API of your objects and a scenario
that illustrate their correct behavior. It helps you to program your solution.

127

Crafting a simple embedded DSL with Pharo

11.4 Instance creation interface

We would like to get a simpler way to create Die instances. For example we
want to create a 20-face die as follows: Die withFaces: 20 instead of always
have to send the new message to the class as in Die new faces: 20. Both ex-
pressions are creating the same die but one is shorter.

Let us look at it:

• In the expression Die withFaces:, the message withFaces: is sent to
the class Die. It is not new, we constantly sent the message new to Die to
created instances.

• Therefore we should define a method that will be executed

Let us define a test for it.
DieTest >> testCreationIsOk

self assert: (Die withFaces: 20) faces equals: 20

What the test clearly shows is that we are sending a message to the class Die
itself.

Defining a class method

Define the class method withFaces: as follows:

• Click on the class button in the browser to make sure that you are editing
a classmethod.

• Define the method as follows:

Die class >> withFaces: aNumber
"Create and initialize a new die with aNumber faces."
| instance |
instance := self new.
instance faces: aNumber.
^ instance

Let us explain this method

• The method withFaces: creates an instance using the message new.
Since self represents the receiver of the message and the receiver of the
message is the class Die itself then self represents the class Die.

• Then the method sends the message faces: to the instance and

• Finally returns the newly created instance.

Pay really attention that a class method withFaces: is sent to a class, and an
instance method sent to the newly created instance faces:. Note that the class

128

11.4 Instance creation interface

method could have also named faces: or any name we want, it does not mat-
ter, it is executed when the receiver is the class Die.

This test will not work since we did not create yet the method faces:. This is
now the time to define it. Pay attention the method faces: is sent to an in-
stance of the class Die and not the class itself. It is an instance method, there-
fore make sure that you deselected the class button before editing it.

Die >> faces: aNumber
faces := aNumber

Now your tests should run. So even if the class Die could implement more be-
havior, we are ready to implement a die handle.

Important A class method is a method executed in reaction to messages
sent to a class. It is defined on the class side of the class. In Die withFaces:
20, the message withFaces: is sent to the class Die. In Die new faces:
20, the message new is sent to the class Die and the message faces: is sent
to the instance returned by Die new.

[Optional] Alternate instance creation definition

In a first reading, you can skip this section. The class method definition with-
Faces: above is strictly equivalent to the one below.

Die class >> withFaces: aNumber
^ self new faces: aNumber; yourself

Let us explain it a bit. self represents the class Die itself. Sending it the mes-
sage new, we create an instance and send it the faces: message. And we re-
turn the expression. So why do we need the message yourself. The message
yourself is needed to make sure that whatever value the instance message
faces: returns, the instance creation method we are defining returns the new
created instance. You can try to redefine the instance method faces: as fol-
lows:
Die >> faces: aNumber

faces := aNumber.
^ 33

Without the use of yourself, Die withFaces: 20 will return 33. With your-
self it will return the instance.

The trick is that yourself is a simple method defined on Object class: The
message yourself returns the receiver of a message. The use of ; sends the
message to the receiver of the previous message (here faces:). The message
yourself is then sent to the object resulting from the execution of the ex-

129

Crafting a simple embedded DSL with Pharo

pression self new (which returns a new instance of the class Die), as a con-
sequence it returns the new instance.

11.5 First specification of a die handle

Let us define a new class DieHandle that represents a die handle. The follow-
ing code snippet shows the API that we would like to offer for now (as shown in
Figure 11-3). We create a new handle then add some dice to it. We will use this
kind of expressions in future tests below.

faces:
roll

faces
Die

roll
addDie:
+ aDieHandle

dice
DieHandle

Figure 11-3 A die handle is composed of dice.

DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself

Of course we will define tests first for this new class. We define the class DieHan-
dleTest.
TestCase << #DieHandleTest

package: 'Dice'

Testing a die handle

We define a new test method as follows. We create a new handle and add one
die of 6 faces and one die of 10 faces. We verify that the handle is composed of
two dice.
DieHandleTest >> testCreationAdding

| handle |
handle := DieHandle new

addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself.

self assert: handle diceNumber = 2.

130

11.6 Defining the DieHandle class

In fact we can do it better. Let us add a new test method to verify that we can
even add two dice having the same number of faces.

DieHandleTest >> testAddingTwiceTheSameDice
| handle |
handle := DieHandle new.
handle addDie: (Die withFaces: 6).
self assert: handle diceNumber = 1.
handle addDie: (Die withFaces: 6).
self assert: handle diceNumber = 2.

Now that we specified what we want, we should implement the expected class
and messages. Easy!

11.6 Defining the DieHandle class

The class DieHandle inherits from Object and it defines one instance variable
to hold the dice it contains.
Object subclass: ...

... Your solution ...

We simply initialize it so that its instance variable dice contains an instance of
OrderedCollection.
DieHandle >> initialize

... Your solution ...

Then define a simple method addDie: to add a die to the list of dice of the han-
dle. You can use the message add: sent to a collection.

DieHandle >> addDie: aDie
... Your solution ...

Now you can execute the code snippet and inspect it. You should get an inspec-
tor as shown in Figure 11-4

DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself

Finally, we should add the method diceNumber to the DieHandle class to be
able to get the number of dice of the handle. We just return the size of the dice
collection.
DieHandle >> diceNumber

^ dice size

Now your tests should run and this is a good moment to save and publish your
code.

131

Crafting a simple embedded DSL with Pharo

Figure 11-4 Inspecting a DieHandle.

11.7 Improving programmer experience

Now when you open an inspector you cannot see well the dice that compose
the die handle. Click on the dice instance variable and you will only get a list
of a Dice without further information. What we would like to get is something
like a Die (6) or a Die (10) so that in a glance we know the faces a die has.

DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself

This is the message printOn: that is responsible to provide a textual repre-
sentation of the message receiver. By default, it just prints the name of the
class prefixed with 'a' or 'an'. So we will enhance the printOn: method of
the Die class to provide more information. Here we simply add the number of
faces surrounded by parenthesis. The printOn: message is sent with a stream
as argument. This is in such stream that we should add information. We use
the message nextPutAll: to add a number of characters to the stream. We
concatenate the characters to compose () using the message , comma defined
on collections (and that concatenate collections and strings).

Die >> printOn: aStream

super printOn: aStream.
aStream nextPutAll: ' (', faces printString, ')'

Now in your inspector you can see effectively the number of faces a die handle
has as shown by Figure 11-5 and it is now easier to check the dice contained

132

11.8 Rolling a die handle

inside a handle (See Figure 11-6).

Figure 11-5 Die details.

Note This implementation of printOn: is suboptimal. Indeed during the mes-
sage faces printString, it creates a separate stream instead of using the one
pass as argument. To understand the problem you can have a look at the imple-
mentation of the method printString defined in the class Object.
Die >> printOn: aStream

super printOn: aStream.
aStream

nextPutAll: '(';
print: faces;
nextPutAll: ')'

11.8 Rolling a die handle

Now we can define the rolling of a die handle by simply summing result of
rolling each of its dice. Implement the rollmethod of the DieHandle class.
This method must collect the results of rolling each dice of the handle and sum
them.

You may want to have a look at the method sum: in the class Collection or
use a simple loop such as do: to iterate over the dice.

DieHandle >> roll
... Your solution ...

133

Crafting a simple embedded DSL with Pharo

Figure 11-6 A die handle with more information.

Now we can send the message roll to a die handle.

handle := DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself.

handle roll

Define a test to cover such behavior. Rolling an handle of n dice should be be-
tween n and the sum of the face number of each die.
DieHandleTest >> testRoll

... Your solution ...

11.9 About Dice and DieHandle API

It is worth to spend some times looking at the relationship between DieHan-
dle and Dice. A die handle is composed of dices. What is an important design
decision is that the API of the main behavior (roll) is the same for a die or a
die handle. You can send the message roll to a dice or a die handle. This is an
important property.

134

11.9 About Dice and DieHandle API

Why? Because it means that from a client perspective, she/he can treat the
receiver without having to take care about the kind of object it is manipulat-
ing. A client just sends the message roll to an object and get back a number
(as shown in Figure 11-7). The client is not concerned by the fact that the re-
ceiver is composed out a simple object or a complex one. Such design decision
supports the Don’t ask, tell principle.

aDie(6)

aDieHandleroll

aDie (6)roll

aDie(10)
roll

client

client

Figure 11-7 A polymorphic API supports the Don’t ask, tell principle.

Important Offering polymorphic API is a tenet of good object-oriented
design. It enforces the Don’t ask, tell principle. Clients do not have to worry
about the type of the objects to whom they talk to.

For example we can write the following expression that adds a die and a dieHan-
dle to a collection and collect the different values (we convert the result into an
array so that we can print it in the book).

| col |
col := OrderedCollection new.
col add: (Die withFaces: 20).
col add: (DieHandle new addDie: (Die withFaces: 4); yourself).
(col collect: [:each | each roll]) asArray
>>> #(17 3)

About composition

Composite objects such document objects (a book is composed of chapters, a
chapter is composed of sections, a section is composed of paragraphs) have of-
ten a more complex composition relationship than the composition between
die and die handle. Often the composition is recursive in the sense that an el-
ement can be the whole: for example, a diagram can be composed of lines, cir-
cles, and other diagrams. We will see an example of such composition in the
Expression Chapter 15.

135

Crafting a simple embedded DSL with Pharo

11.10 Role playing syntax

Now we are ready to offer a syntax following practice of role playing game, i.e.,
using 2 D20 to create a handle of two dice with 20 faces each. For this purpose
we will define class extensions: we will define methods in the class Integer
but these methods will be only available when the package Dice will be loaded.

But first let us specify what we would like to obtain by writing a new test in the
class DieHandleTest. Remember to always take any opportunity to write tests.
When we execute 2 D20 we should get a new handle composed of two dice and
can verify that. This is what the method testSimpleHandle is doing.

DieHandleTest >> testSimpleHandle
self assert: 2 D20 diceNumber = 2.

Verify that the test is not working! It is much more satisfactory to get a test
running when it was not working before. Now define the method D20 with a
protocol named *NameOfYourPackage ('*Dice’ if you named your package
'Dice'). The * (star) prefixing a protocol name indicates that the protocol
and its methods belong to another package than the package of the class. Here
we want to say that while the method D20 is defined in the class Integer, it
should be saved with the package Dice.

The method D20 simply creates a new die handle, adds the correct number of
dice to this handle, and returns the handle.

Integer >> D20
... Your solution ...

About class extensions

We asked you to place the method D20 in a protocol starting with a star and
having the name of the package ('*Dice') because we want this method to
be saved (and packaged) together with the code of the classes we already cre-
ated (Die, DieHandle,...) Indeed in Pharo we can define methods in classes that
are not defined in our package. Pharoers call this action a class extension: we
can add methods to a class that is not ours. For example D20 is defined on the
class Integer. Now such methods only make sense when the package Dice is
loaded. This is why we want to save and load such methods with the package
we created. This is why we are defining the protocol as '*Dice'. This notation
is a way for the system to know that it should save the methods with the pack-
age and not with the package of the class Integer.

Now your tests should pass and this is probably a good moment to save your
work either by publishing your package and to save your image.

136

11.11 Handle’s addition

We can do the same for the default dice with different faces number: 4, 6, 10,
and 20. But we should avoid duplicating logic and code. So first we will intro-
duce a new method D: and based on it we will define all the others.

Make sure that all the new methods are placed in the protocol '*Dice'. To
verify you can press the button Browse of the Monticello package browser and
you should see the methods defined in the class Integer.
Integer >> D: anInteger

... Your solution ...

Integer >> D4
^ self D: 4

Integer >> D6
^ self D: 6

Integer >> D10
^ self D: 10

Integer >> D20
^ self D: 20

We have now a compact form to create dice and we are ready for the last part:
the addition of handles.

11.11 Handle’s addition

Now what is missing is that possibility to add several handles as follows: 2 D20
+ 3 D10. Of course let’s write a test first to be clear on what we mean.
DieHandleTest >> testSumming

| handle |
handle := 2 D20 + 3 D10.
self assert: handle diceNumber = 5.

We will define a method + on the DieHandle class. In other languages this is
often not possible or is based on operator overloading. In Pharo + is just a mes-
sage as any other, therefore we can define it on the classes we want.

Now we should ask ourself what is the semantics of adding two handles. Should
we modify the receiver of the expression or create a new one. We preferred a
more functional style and choose to create a third one.

The method + creates a new handle then add to it the dice of the receiver and
the one of the handle passed as argument to the message. Finally we return it.

DieHandle >> + aDieHandle
... Your solution ...

137

Crafting a simple embedded DSL with Pharo

Now we can execute the method (2 D20 + 1 D6) roll nicely and start play-
ing role playing games, of course.

11.12 Conclusion

This chapter illustrates how to create a small DSL based on the definition of
some domain classes (here Dice andDieHandle) and the extension of core class
such as Integer. It also shows that we can create packages with all the meth-
ods that are needed even when such methods are defined on classes external
(here Integer) to the package. It shows that in Pharo we can use usual opera-
tors such as + to express natural models.

138

	About this book
	A word of presentation
	Structure of the book
	Fast track

	What you will learn
	Pharo version
	Growing software
	Syntax, blocks, and iterators

	Typographic conventions
	Videos
	Thanks

	Getting in touch with Pharo
	Pharo syntax in a nutshell
	Simplicity and elegance of messages
	Sending a message & the receiver
	Evaluating code and convention for showing results
	Other messages & return values
	The selector & unary messages
	A first keyword-based message
	Keyword-based messages with multiple arguments
	Binary messages

	Which message is executed first?
	Sending messages to classes
	Local variables and statement sequences
	About literal objects
	Sending multiple messages to the same object
	Blocks
	Control structures
	Methods
	Resources
	Conclusion

	Challenge yourself
	Challenge: Message identification
	Challenge: Literal objects
	Challenge: Kind of messages
	Challenge: Results
	Challenge: unneeded parentheses

	A first tutorial: Developing a simple counter
	Our use case
	Create a package and class
	Create a package
	Create a class

	Defining protocols and methods
	Create a method
	Adding a setter method
	Define a Test Class
	A typographic convention

	Saving your code as a git repository with Iceberg
	Open Iceberg
	Add and configure a project
	Add your package to the project
	Commit your changes
	Code saved

	Adding more messages
	Solution

	Instance initialization method
	Define an initialize method
	Define a new instance creation method
	Better object description
	Saving your code on a remote server
	Create a project on the remote server
	Add a remote repository in HTTPS access
	Push

	Conclusion

	Tests, tests and tests
	Writing a test in 2 minutes
	How do we declare a test in Pharo?

	Test Driven Design
	Why testing is important
	What makes a good test?
	SUnit by example
	Step 1: Create the test class
	Step 2: Write a test method
	Step 3: Run the test
	Step 4: Write more tests
	Step 5: Run all the tests
	Step 6: Alternative ways to execute tests
	Step 7: Looking at a bug
	Step 8: Interpret the results

	The SUnit cookbook
	About assert:equals:
	Other assertions
	Running a single test
	Running all the tests in a test class
	Must I subclass TestCase?

	Defining a fixture
	Step 1: Define the class and context
	Step 2: Setting a reusable context
	Step 3: Write some test methods

	Chapter summary

	Some collection katas with words
	Isogram
	About strings
	A solution using sets
	Hints
	Checking expression
	Adding a method to the class String

	Defining a test
	Testing several strings

	Some fun: Obtaining french isograms
	Pangrams
	Imagine a solution
	A first version
	A better version

	Handling alphabet
	Identifying missing letters
	About the return values of detectFirstMissingLetterFor:
	Detecting all the missing letters

	Palindrome as exercise
	Some possible implementations

	Conclusion

	About objects and classes
	Objects and classes
	Objects: Entities reacting to messages
	Turtles as an example
	Creating an object
	Sending messages
	Multiple instances: each with its own state.

	Messages and Methods
	Message: what should be executed
	Method: how we execute it

	An object is a protective entity
	An object protects its data
	With counters
	A class: blueprint or factory of objects
	Object structure
	Object behavior
	Self is the message receiver

	Class and instances are really different
	Conclusion

	Revisiting objects and classes
	A simple and naive file system
	Studying a first scenario
	Defining a class
	A first little analysis

	Printing a directory
	Adding files
	An example first
	A new class definition

	One message and multiple methods
	Objects: stepping back
	Examples of distribution of responsibilities
	File size
	Search

	Important points
	Modular thinking
	Sending a message is making a choice
	Polymorphic objects

	Distribution of responsibilities
	Procedural

	So far so good? Not fully!
	Conclusion

	Converter
	First a test
	Define a test method (and more)
	The class TemperaturConverter
	Converting from Fahrenheit to Celsius
	About floats
	Printing rounded results
	Building a map of degrees
	Adding logging behavior
	Discussion
	Conclusion

	An electronic wallet
	A first test
	Adding coins
	Looking at Bag
	Using a bag for a wallet
	More tests
	Testing money
	Checking to pay an amount
	Biggest coin
	Biggest below a value
	Improving the API
	Better string representation
	Easier addition
	Removing coins

	Coins for paying: First version
	Better heuristics
	Conclusion

	Crafting a simple embedded DSL with Pharo
	Getting started
	Create a test
	Define the class Die

	Rolling a die
	Creating another test
	Instance creation interface
	Defining a class method
	[Optional] Alternate instance creation definition

	First specification of a die handle
	Testing a die handle

	Defining the DieHandle class
	Improving programmer experience
	Rolling a die handle
	About Dice and DieHandle API
	About composition

	Role playing syntax
	About class extensions

	Handle's addition
	Conclusion

	Sending messages
	Sending a message is making a choice
	Negation: the not message
	Implementing not
	A first hint.
	A second hint.
	Studying the implementation

	Implementing disjunction
	When the receiver is true.
	When the receiver is false.

	About ifTrue:ifFalse: implementation
	Implementation.
	Optimisation.

	What is the point?
	Classes represent choices

	Conclusion

	Looking at inheritance
	Inheritance: Incremental definition and behavior reuse
	Inheritance
	Improving files/directories example design
	Objectives

	Transformation strategies
	Factoring out state
	Moving instance variable name to superclass
	Moving parent to superclass

	Factoring similar methods
	Sending a message and method lookup
	Inheritance properties

	Basic method overrides
	self-send messages and lookup create hooks
	Example
	Describe implementation

	Hook/Template explanations
	Essence of self and dispatch
	Solutions

	Instance variables vs. messages
	Conclusion

	Extending superclass behavior
	Revisiting printOn:
	Improving the situation
	Why self does not work!

	Extending superclass behavior using super
	Another example
	Really understanding super
	Solution

	Conclusion

	A little expression interpreter
	Starting with constant expressions and a test
	Negation
	Adding expression addition
	Multiplication
	Stepping back
	Messages and methods
	About common superclass
	Design corner: About the addition and multiplication model

	Negated as a message
	negated message for constants
	negated message for negations
	negated message for additions
	negated message for multiplications

	Annoying repetition
	Introducing the Expression class
	Class creation messages
	Better instance creation for constants
	Better instance creation for negations
	Better instance creation for additions
	Better instance creation for multiplications

	Introducing examples as class messages
	Printing
	A word about streams
	Printing constant
	Printing negation
	Printing addition
	Printing multiplication

	Revisiting the negated message for Negation
	Understanding method override

	Introducing the BinaryExpression class
	Creating a template and hook method

	What did we learn
	About hook methods
	Creating hooks is always good
	Avoid not documenting hooks

	Variables
	Some technical points
	Dictionaries
	Dynamic Arrays
	Pairs

	Back to variable expressions
	Non working approaches
	The solution: adding evaluateWith:

	Conclusion

	Little projects
	A basic LAN application
	Creating the class LNNode
	Exercise: Create a new package SimpleLAN
	Exercise: Create a Test class
	Exercise: Class creation
	Exercise: Accessors
	Exercise: Define the method hasNextNode

	Sending/receiving packets
	A little example.

	Better printString
	Creating the class LNPacket
	Exercise: defining class LNPacket
	Exercise: Adding isAddressedTo:
	Exercise: adding a printOn: method

	Creating the class LNWorkstation
	Exercise: Define LNWorkstation
	Exercise: Redefining the method accept:
	About good design.

	Exercise: Defining the method emit:

	Creating the class LNPrinter
	Illustrating scenario

	Simulating the LAN
	Conclusion

	Snakes and ladders
	Game rules
	Game possible run
	Potential objects and responsibilities
	Possible class candidates
	About representation

	About object-oriented design
	CRC cards
	Some heuristics
	Kind of data passed around
	Agility to adapt

	Let us get started
	A first real test
	Accessing one tile
	Adding players
	Avoid leaking implementation information
	About tools
	Displaying players
	Preparing to move players
	Finding the tile of a player
	Moving to another tile
	About our implementation

	Snakes and ladders
	A hierarchy of tiles
	Split Tile class in two
	Adding snake and ladder tiles

	New printing hook
	Using the new hook
	super does not have to be the first expression

	About hooks and templates
	Snake and ladder declaration
	Better tile protocol
	Another little improvement

	Active tile actions
	Alternating players
	Player turns and the current player
	How to find the logic of currentPlayer?
	Game end
	Alternate solution

	Playing one move
	Playing one game step

	Automated play
	Some final tests

	Variations
	Conclusion

	TinyChat: a fun and small chat client/server
	Objectives and architecture
	Loading Teapot
	Message representation
	Class TCMessage
	Accessor creation

	Instance initialisation
	Converting a message object into a string
	Building a message from a string
	Starting with the server
	Storing messages
	Basic operations on message list
	List of messages from a position
	Message formatting

	The Chat server
	TCServer class creation

	Server logic
	The client
	TinyChat class
	HTTP commands

	Client operations
	Client connection parameters
	User interface
	Now chatting
	Conclusion and ideas for future extensions

	Bibliography

