
CHA P T E R 1
Flag and country exercises

In this tutorial, we will take a concrete approach to teach you some Pharo code.

• You will learn how to draw a country shape using Roassal (a visualization
engine).

• In a second step, you will use an HTTP client to grab the flag of the coun-
try based on its unique international id.

• You will then define a small visual application using the Spec UI builder
and it will display the country, its ID, and flag.

1.1 Resources

This tutorial uses the following resources:

• The Roassal visualization engine. Roassal - (See https://github.com/pharo-
graphics/Roassal).

• An XML parser XML Parser - (See https://github.com/pharo-contributions/XML-
XMLParser).

• A file world.svg. This SVG file defines country shapes as shown in Fig-
ure 1-2. You can find this file at https://github.com/SquareBracketAssociates/booklet-
CountryTutorial/.

• The Spec UI builder that supports the definition of user interface. Spec
book - (see https://github.com/SquareBracketAssociates/BuildingAppli-
cationWithSpec2/).

1

https://github.com/pharo-graphics/Roassal
https://github.com/pharo-graphics/Roassal
https://github.com/pharo-graphics/Roassal
https://github.com/pharo-contributions/XML-XMLParser
https://github.com/pharo-contributions/XML-XMLParser).
https://github.com/pharo-contributions/XML-XMLParser).
https://github.com/SquareBracketAssociates/booklet-CountryTutorial/.
https://github.com/SquareBracketAssociates/booklet-CountryTutorial/.
https://github.com/SquareBracketAssociates/BuildingApplicationWithSpec2/releases
https://github.com/SquareBracketAssociates/BuildingApplicationWithSpec2/releases
https://github.com/SquareBracketAssociates/BuildingApplicationWithSpec2/
https://github.com/SquareBracketAssociates/BuildingApplicationWithSpec2/

Flag and country exercises

1.2 Roassal first script

Let us get started. Inspect the following code snippet to get two boxes drawn in
the canvas. You should get an inspector as shown in Figure 1-1.

| c |
c := RSCanvas new.
blueBox := RSBox new

size: 80;
color: #blue.

redBox := RSBox new
size: 80;
color: #red.

c
add: blueBox;
add: redBox.

blueBox translateBy: 40 @ 20.
c

Figure 1-1 A program and its graphical rendering: Two boxes.

1.3 World map

Now we are ready to display countries. The idea is that we will copy the SVG
path definition from the world.svg file into a little Roassal program that ren-
ders SVG paths.

2

1.4 SVG shapes

• Check file world.svg, open it with a text editor.

• Copy the path of a country that you want to display, pick a little country
that will help you.

Figure 1-2 World.svg rendered.

1.4 SVG shapes

Now we will display the SVG path you selected. In the following snippet, we put

Inspect the following code snippet: it produces a little bezier surface.

| c svg |
c := RSCanvas new.
svg := (RSSVGPath new

svgPath: 'M 100 350 q 150 -300 300 0';
yourself).

c addShape: svg.
c @ RSCanvasController.
c

Zoom out pressing the key O on the window. You should obtain a not-really
exciting graphical form.

3

Flag and country exercises

1.5 Display a country

Using the path defined in the world.svg file taking, for example, the path of
France you should get Figure 1-3.

svgPath := 'm 482.92875,298.0884 ...'.
c := RSCanvas new.
svg := RSSVGPath new

color: Color blue;
svgPath: svgPath.

c add: svg.
c @ RSCanvasController.
c

Figure 1-3 Displaying France.

1.6 Loading an XML Parser

So far it was fun but too manual. We will use an XML parser. In addition, we
will represent each country as an object that we can manipulate later.

4

1.7 Tweaking XML tree

Check if the XMLParser is loaded in your image. Else you can load the XML
parser available at https://github.com/pharo-contributions/XML-XMLParser.
Metacello new

baseline: 'XMLParser';
repository: 'github://pharo-contributions/XML-XMLParser/src';
load.

1.7 Tweaking XML tree

Using the following snippet, inspect the tree returned by the parser.

(XMLDOMParser parse: 'world.svg' asFileReference readStream contents)
document inspect

Dabble the data and find the list of countries. You can see this in Figure 1-4.
It shows that the field 'nodes' contains another collection that contains one
collection that finally contains a list of elements.

Figure 1-4 Dabbling the XML node of the files. The inspector lets you navigate a
complex structure

Now we would like to convert all the elements into a little class representing
countries so that we can manipulate it later.

5

Flag and country exercises

1.8 The country class

Create a country class.

Object << #EarthMapCountry
slots: { #svgPath . #name . #code };
package: 'SummerSchool'

1.9 Define methods

• Define the corresponding accessors.

• Define the method named fromXML: that creates an instance of Earth-
MapCountry from an XML element.

EarthMapCountry >> fromXML: aXMLElement

svgPath := aXMLElement attributeAt: 'd'.
name := aXMLElement attributeAt: 'title'.
code := aXMLElement attributeAt: 'id'.

• Define the method, asRSShape that returns the Roassal SVG shape of a
country.

EarthMapCountry >> asRSShape
^ RSSVGPath new svgPath: svgPath

1.10 Grabbing a first country

Now we can convert an element from the XML file and create the correspond-
ingEarthMapCountry instance. (For the XML expert we should not do it that
way but use a SAXParser but this is not the point of this tutorial).

country := EarthMapCountry new
fromXML: (XMLDOMParser parse: 'world.svg' asFileReference
readStream contents) document nodes first nodes second.

country asRSShape inspect

All countries

Now let us grab all the countries. The following snippet is a cheap and hacky
way to create all the countries from the SVG file.

6

1.11 Empowering developers in action

Figure 1-5 A dry list of countries.

| col |
col := OrderedCollection new.
(XMLDOMParser parse: 'world.svg' asFileReference readStream contents)

document nodes first nodes
do: [:node | (node class = XMLElement)

ifTrue: [col add: (EarthMapCountry new fromXML: node)]].
col inspect

Then you can see a list of countries as shown in Figure 1-5.

1.11 Empowering developers in action

Ok we see the list of objects in the inspector. but we can do better, we want to
see in the inspector the shape of the country. For this, we define the follow-
ing method that extends the inspector. You should get the situation shown by
Figure 1-6.

EarthMapCountry >> inspectorShape
<inspectorPresentationOrder: 0 title: 'Shape'>

| canvas |
canvas := RSCanvas new.
canvas add: self asRSShape.
canvas @ RSCanvasController.
^ SpRoassalInspectorPresenter new canvas: canvas; yourself

Since looking at a list of similar elements does not give any useful information
we can simply enhance the experience by adding a little printOn: method as
follows:

7

Flag and country exercises

Figure 1-6 Extending the inspector.

EarthMapCountry >> printOn: aStream
super printOn: aStream.
aStream nextPutAll: ' ', name

We can now see and make sense of the list as shown in Figure 1-7.

Figure 1-7 List of counties with printing information and shape displayed.

You can enhance the printOn: method to display the country code.

1.12 Introduce the World

We used the following snippet of code but this is a bit brittle.

8

1.12 Introduce the World

| col |
col := OrderedCollection new.
(XMLDOMParser parse: 'world.svg' asFileReference readStream contents)

document nodes first nodes
do: [:node | (node class = XMLElement)

ifTrue: [col add: (EarthMapCountry new fromXML: node)]].
col

We could do better. We could define a class that holds countries. We will define
a new class whose responsibilities will be to import the country list and act as
a mini database for the future functionalities we want to implement (such as a
flag browser).

Defining the map country

Object << #EarthMap
slots: { #countries };
package: 'EarthTutorial'

We initialize the countries instance variable to an OrderedCollection. De-
fine an accessor.
EarthMap >> initialize

super initialize.
countries := OrderedCollection new

We define the method importCountryFromXMLNode: that converts an XML
node representing a country into a country object.

EarthMap >> importCountryFromXMLNode: aXMLElement

countries add: (EarthMapCountry new fromXML: aXMLElement)

We define the method xmlTreeFromFile: that given a file name returns the
corresponding XML tree

EarthMap >> xmlTreeFromFile: aFileName

^ aFileName asFileReference readStreamDo: [:stream |
(XMLDOMParser parse: stream) document]

EarthMap >> populatedCanvas

^ RSCanvas new
addAll: (countries collect: [:country | country asRSShape]);
@ RSCanvasController;
yourself

9

Flag and country exercises

EarthMap >> openPopulatedCanvas

self populatedCanvas open

You have now all the pieces to define the method ct{importCountriesFrom:}
that loads an xml file and populate the map with country objects. Once you de-
fine it you should get ready to get a map and display it. The following snippet
returns a map with filed-up countries and opens a Roassal canvas displaying all
the countries.
EarthMap new

importCountriesFrom: (FileSystem workingDirectory / 'pharo-local' /
'iceberg' / 'EarthTutorial' / 'resources' /'world.svg');

openPopulatedCanvas;
yourself

Figure 1-8 Getting a Map object and a canvas showing its contents.

1.13 A little note about our process

We defined the previous methods one by one. Notice that we could have started
from the original code snippet, turn it into a method, and apply multiple ex-
tract methods and other refactorings.

10

1.14 Grabbing flags from flagcdn

1.14 Grabbing flags from flagcdn

We are ready to work on a country browser displaying its name, flag, and shape.
The first thing is to get a flag. For this, we will use the https://flagcdn.com/

The following script gives you the principle to get a flag in PNG from the web.
Adapt it to get the flag of the country of your choice. Notice that the <code> is
expected in lowercase (i.e., fr and not FR).

| request pngArray |
request := ZnClient new.
request get: 'https://flagcdn.com/w320/<code>.png'.
request isSuccess ifTrue: [

pngArray := request response contents].
pngArray

The following expression creates a bitmap image from a byte-array represent-
ing a png ImageReadWriter formFromStream: (ReadStream on: pngAr-
ray)). Use it with the previous snippet to be able to display a flag in PNG for-
mat.

1.15 Spec user interface

We will now define a simple user interface to display the list of countries and
when we click on one it shows the tag and the flag (See Figure 1-9).

Figure 1-9 The flag browser.

11

https://flagcdn.com/
https://flagcdn.com/

Flag and country exercises

New presenter.

First we define a new class EarthCountryBrowser. It inherits from the class
SpPresenterWithModel.
SpPresenterWithModel << #EarthCountryBrowser

slots: { #countryList . #countryCode . #countryFlag };
package: 'EarthTutorial'

The instance variables are:

• countryList is a presenter of the list of country names. It is a drop-list
presenter.

• countryCode is a presenter to display the country code such as FR or CH.
It is an input field presenter.

• countryFlag is a presenter for the flag. It is an image presenter.

Initialize sub components.

With the method initializePresenters, we initialize the different presen-
ters that compose our interface. Note that the expression self model is given
by the superclass SpPresenterWithModel. The model is automatically set us-
ing the message ct{on:} as shown below in expression ct{(EarthCountryBrowser
on: ...}. In our scenario the model is an instance of the class ct{EarthMap}.

EarthCountryBrowser >> initializePresenters

super initializePresenters.

countryList := self newDropList.
countryList display: [:item | item name].
countryList sortingBlock: [:a :b | a model name < b model name].
countryList items: self model countries.

countryCode := self newTextInput.
countryCode editable: false.
countryCode text: ' -- '.

countryFlag := self newImage

Layout the elements.

We set the placement of the subcomponents by defining the method default-
Layout.

12

1.16 Enhancing the browser

EarthCountryBrowser >> defaultLayout

^ SpBoxLayout newTopToBottom
add: (SpBoxLayout newLeftToRight

add: countryList expand: true;
add: countryCode width: 40)

height: self class toolbarHeight;
add: countryFlag height: 350;
yourself

At this stage you should be able to open the browser even if it is not fully work-
ing.

Here is the snippet we used during this tutorial.

(EarthCountryBrowser on:
(EarthMap new importCountriesFrom: (FileSystem workingDirectory /

'pharo-local' / 'iceberg' / 'EarthTutorial' / 'resources'
/'world.svg')))

open

Figure 1-10 A first version of the interface.

1.16 Enhancing the browser

We turn the snippet that we used to fetch flags into a method named flagFor-
CountryCode:. Notice that if the request fails we return a blue red rectangle.

13

Flag and country exercises

EarthCountryBrowser >> flagForCountryCode: astring

| request pngArray |
request := ZnClient new.
request get:

'https://flagcdn.com/w320/' , astring asLowercase , '.png'.
request isSuccess ifTrue: [

pngArray := request response contents.
^ ImageReadWriter formFromStream: (ReadStream on: pngArray)].

^ BorderedMorph new asForm

Once this is done, we can now define the method onCountrySelected: that
will display the country code and the flag. We concatenate some spaces in
front of the country code so that it looks better on the screen.

EarthCountryBrowser >> onCountrySelected: countryItem

countryCode text: ' ' , countryItem code.
self showFlag: countryItem code

The method onCountrySelected: will be invoked each time the user selects a
new country. The method connectPresenters is responsible for defining the
interaction between the elements. Here we simply invoke the method onCoun-
trySelected: each time a new country is selected.

EarthCountryBrowser >> connectPresenters

countryList whenSelectedItemChangedDo: [:item |
self onCountrySelected: item].

We let as an exercise the display of the roassal visualization. For this you can
add a new component to the browser and initialize it to newRoassal. The mes-
sage newRoassal creates an instance of the class SpRoassalPresenter. You
specify set and get the canvas (using the messages canvas and canvas:) to be
displayed.

1.17 Conclusion

In this little tutorial, we show several important aspects of Pharo.

• First, in a couple of lines we created a little tool. We took the time to de-
compose scripts into objects and gave such objects responsibilities (such
as import, conversion, ...)

• Second, we show how we can dabble complex objects and navigate easily
in their structure.

14

1.17 Conclusion

• Third, we show that we can easily extend the tools of the environment to
get more information about our own data.

All this makes Pharo a really productive platform to model business while im-
proving the feedback loops and speed to manipulate data.

15

	Flag and country exercises
	Resources
	Roassal first script
	World map
	SVG shapes
	Display a country
	Loading an XML Parser
	Tweaking XML tree
	The country class
	Create a country class.

	Define methods
	Grabbing a first country
	All countries

	Empowering developers in action
	Introduce the World
	Defining the map country

	A little note about our process
	Grabbing flags from flagcdn
	Spec user interface
	New presenter.
	Initialize sub components.
	Layout the elements.

	Enhancing the browser
	Conclusion

