
CHA P T E R 4
A first tutorial: Developing a

simple counter

To start off in Pharo, let’s write a simple counter by following the steps given
below. In this exercise you will learn how to create packages, classes, methods,
instances, unit tests and more. This tutorial covers most of the important ac-
tions you will perform when developing in Pharo. You can also watch the com-
panion videos available in the Pharo MOOC at http://mooc.pharo.org, which
help illustrate this tutorial (they are called yy-Redo-xxx). We will also show
you how to save your code with git hosting services such as GitHub using Ice-
berg.

Note that the development flow promoted by this little tutorial is traditional in
the sense that you will define a package, a class, then define its instance vari-
ables, then define its methods, and then finally execute it. Now in Pharo, devel-
opers usually follow a different workflow called Extreme Test-Driven Develop-
ment: they execute an expression that raises an error. These errors are caught
by the Debugger and the developer codes directly in the debugger, allowing the
system to define instance variables and methods on the fly for them.

Once you finish this tutorial, and you feel more confident in Pharo, we strongly
suggest you do the exercise again using TDD: define and write a test, execute
it, write the code to make the test pass and loop. In Pharo you can also use Ex-
treme TDD: define and write a test, execute it, write the code in the debugger
to make the test pass. Extreme TDD is a super powerful approach. However,
you cannot really get the real feeling of it without actually doing it yourself.
There is another video in the Pharo mooc showing this powerful approach of
coding. We really urge you to have a look at it and practice.

27

http://mooc.pharo.org
http://mooc.pharo.org

A first tutorial: Developing a simple counter

4.1 Our use case

Here is our use case: We want to be able to create a counter, increment it twice,
decrement it and check that its value is as expected. The following example
shows this in action, and will make a perfect unit test - you will define one
later.
| counter |
counter := Counter new.
counter increment; increment.
counter decrement.
counter count = 1

We will write all of the necessary classes and methods to support this example.

4.2 Create a package and class

In this part, you will create your first class. In Pharo, a class is defined in a
package, so we’ll need to create a package first to put the class in. The steps
are the same every time we create a class, so pay attention.

Create a package

Use the Browser to create a package (right-click in the package pane, select
New Package). The system will ask you for a name, write MyCounter. This new
package is then created, added to the package list, and selected by default.

Create a class

The lower pane of the Browser should now be open with a tab showing the tem-
plate for a class definition. To create a new class, you just need to edit this tem-
plate and compile the class.

Object << #MyClass
slots: {};
package: 'MyCounter'

There are three parts you might want to change:

• Superclass. This describes the superclass of the class you’re creating. It
defaults to Object, the least specialized of all classes in Pharo, which is
what we want for our new Counter class. This won’t always be the case:
often you’ll want to base a class on a more specific class.

• Class Name. Next, you should fill in the name of your class by replac-
ing #MyClass with #Counter. Take care that the name of the class starts

28

4.2 Create a package and class

with a capital letter and that you do not remove the # sign in front of
#Counter. This is because we name our classes using a Symbol, a unique
string in Pharo which we write starting with a #.

• Slots. Then, you should fill in the names of the instance variables, also
called slots, of this class. We need only one instance variable called #count.

• Package. Here you specify the package name.

You should get the following class definition:

Object << #Counter
slots: { #count };
package: 'MyCounter'

We now have a class definition for the class Counter. To define it in our sys-
tem we still have to compile it - either through the context menu in the lower
panel, or the shortcut Cmd-S. The class Counter is now compiled and immedi-
ately added to the system. Figure 4-1 illustrates the resulting situation that the
browser should show.

Figure 4-1 Class created: It inherits from Object class and has one instance vari-
able named count.

The Pharo code critic tool will run automatically and shows some errors; don’t
worry about them for now, they’re mainly about our class not being used yet.
As we are disciplined developers, we will add a comment to our Counter class
by clicking the Comment pane and the Toggle Edit / View comment toggle.
You can write the following comment:

29

A first tutorial: Developing a simple counter

`Counter` is a simple concrete class which supports incrementing and
decrementing.

Its API is
- `decrement` and `increment`
- `count`
Its creation message is `startAt:`

Comments are written in Microdown, a dialect of Markdown that should be
quite intuitive. They render nicely in the Browser. Again, accept these changes
either through the menu or by hitting Cmd-S. Figure 4-2 shows the class with
its comment.

Figure 4-2 Counter class has now a comment! Well done.

4.3 Defining protocols and methods

In this part you will use the Browser to learn how to add protocols and meth-
ods. The class we have defined has one instance variable named count, and
we’re going to use that variable to keep count. We’ll increment it, decrement it,
and show its current value. But in Pharo we need to remember three things:

1. Everything is an object

2. Instance variables are completely private to the object

3. The only way to interact with an object is by sending messages to it

30

4.4 Create a method

And so there is no other mechanism to access our instance variable from out-
side of our counter than by sending a message to the object. What must do is
define a method that returns the value of the instance variable. Such methods
are called getter methods. So, let’s define an accessor method for our instance
variable count. A method is usually placed into a protocol. These protocols are
just a group of methods - they have no meaning in Pharo, but they do convey
important information to the readers of your class. Although protocols can
have any name, Pharo programmers follow certain conventions when naming
protocols. If you define a method and are not sure what protocol it should be
in, first take a look through existing code and see if you can find an appropriate
protocol that already exists.

4.4 Create a method

Now let us create the getter method for the instance variable count. Start by
selecting the class Counter in a Browser, and make sure you are editing the
instance side of the class (i.e., we define methods on instances of our class) by
selecting the instance side tab. Then define your method. Figure 4-3 shows the
method editor ready to define a method.

Figure 4-3 The method editor selected and ready to define a method.

As a general hint, double click at the end of or beginning of the text and start
typing your method: this automatically replaces the template. Write the fol-
lowing method definition:

31

A first tutorial: Developing a simple counter

count
^ count

This defines a method called count, which takes no arguments and returns
the value of the instance variable count. Then choose accept in the menu to
compile the method. The method is automatically categorized in the protocol
accessing. Figure 4-4 shows the state of the system once the method is defined.

Figure 4-4 The method count defined in the protocol accessing.

You can now test your new method by typing and evaluating the next expres-
sion in a Playground:

Counter new count
>>> nil

This expression first creates a new instance of Counter, and then sends the
message count to it. It retrieves the current value of the counter. This should
return nil (the default value for non-initialized instance variables). After-
wards we will create instances with a reasonable default initialization value.

4.5 Adding a setter method

Complementing the getter method we find the setter method. These are used to
change the value of an instance variable from outside the object. For example,
the expression Counter new count: 7 first creates a new Counter instance
and then sets its value to 7 by sending it the message count: 7. Getters and

32

4.6 Define a Test Class

setters are collectively referred to as accessor methods. This example shows a
setter method in action:
| c |
c := Counter new count: 7.
c count
>>> 7

The setter method does not currently exist, so as an exercise create the method
count: such that, when invoked on an instance of Counter, the instance vari-
able is set to the argument of the message. Test your method by evaluating the
example above in a Playground.

4.6 Define a Test Class

Writing tests - whether you do it before or after you write your code - isn’t re-
ally optional these days. A collection of well-written tests will support the evo-
lution of your application, and give you confidence that your program does
the things you expect it to do. Writing tests for your code is a good invest-
ment; test code is written once and executed a million times. For example, if
we turned the example above into a test we could have checked automatically
that our new setter method is working as expected.

Our test cases, written as methods, need to live inside a test class that inherits
from TestCase. So we define a class named CounterTest as follows:
TestCase << #CounterTest

package: 'MyCounter'

Now we can write our first test by defining a method. Test methods should
start with test to be automatically executed by the Test Runner or to get the
little clickable circle next to the method name that lets you run the test. Figure
4-5 shows the definition of the method testCountIsSetAndRead in the class
CounterTest.

Define the following method for our test case. It first creates an instance of a
Counter, sets its value and then verifies that the value has been set. The mes-
sage assert:equals: is a message implemented in our test class. It verifies a
fact (in this case that two objects are equal), and will fail the test if the fact isn’t
true.
CounterTest >> testCountIsSetAndRead

| c |
c := Counter new.
c count: 7.
self assert: c count equals: 7

33

A first tutorial: Developing a simple counter

Figure 4-5 A first test is defined and it passes.

A typographic convention

Pharoers frequently use the notation ClassName >> methodName to identify
the class to which a method belongs. For example, the countmethod we wrote
above in our class Counter would be referred to as Counter >> count. Just
keep in mind that this is not exactly Pharo syntax, but more like a convenient
notation we use to indicate ”the instance method count which belongs to the
class Counter”.

From now on, when we show a method in this book, we will write the name of
the method in this form. Of course, when you actually type the code into the
browser, you don’t have to type the class name or the >>; instead, you just make
sure that the appropriate class is selected in the class pane. Verify that the
test passes by executing either pressing the circle icon in front of the method
(as shown by Figure 4-5) or using the Test Runner. As you now have your first
green test, it’s a good time to save your work.

4.7 Saving your code as a git repository with Iceberg

Saving your work in the Pharo image is good, but it’s not ideal for sharing
your work or collaborating with others. Much of modern software develop-
ment is mediated through git, an open-source version control system. Services
such as GitHub are built on top of git, providing places where developers can
work together building open source projects - like Pharo! Pharo works with

34

4.7 Saving your code as a git repository with Iceberg

git through the tool Iceberg. This section will show you how to create a local
git repository for your code, commit your changes to it, and also push those
changes to a remote repository such as GitHub.

Open Iceberg

Open Iceberg through the Sourcesmenu, or by hitting Cmd-O,I.

Figure 4-6 Iceberg Repositories browser on a fresh image indicates that if you want
to version modifications to Pharo itself you will have to tell Iceberg where the Pharo
clone is located. But you do not care.

You should now see something similar to Figure 4-6 which shows the top-level
Iceberg pane. It shows the Pharo project, and a few other projects that also
come with your image, and indicates that it could not find a local repository for
them by showing ’Local repository missing’. You do not have to worry about
the Pharo project or having a local repository if you do not want to contribute
to Pharo. We’re going to create a new project of our own.

Add and configure a project

Press the button Add to create a new project. Select ’New Repository’ from the
left and you should see a configuration pane similar to the one in Figure 4-
7. Here we name our project, declare a directory on our local disk where the
project’s source should be saved, and also a subdirectory in the project itself
which will be used to keep the Pharo code in - conventionally this is the src
directory.

Add your package to the project

Once added, the IcebergWorking copy browser should show you an empty pane
because we still haven’t added any packages to our project. Click on the Add
package button and select the package MyCounter as shown by Figure 4-8.

35

Figure 4-7 Add and create a project named MyCounter and with the src subdirec-
tory.

Figure 4-8 Selecting the Add package iconic button, add your package MyCounter
to your project.

4.8 Adding more messages

Commit your changes

Once your package is added, Iceberg shows you that there is uncommitted
code in the packages managed by your project, as shown in Figure 4-9. Press
the Commit button. Iceberg will show you all the changes that are about to be
saved (Figure 4-10). Enter a commit message and commit your changes.

Figure 4-9 Now Iceberg shows you that you did not commit your code.

Code saved

Once you have committed, Iceberg indicates that your system and local reposi-
tory are in sync.

Nicely done! We’ll take a look at how to push these changes to a remote reposi-
tory in a bit. But for now let’s get back to our Counter.

4.8 Adding more messages

We’re going to test-drive the following messages for our Counter class. First,
here’s a test for the incrementmessage:

CounterTest >> testIncrement
| c |
c := Counter new.
c count: 0 ; increment; increment.
self assert: c count equals: 2

Now you try it! Write a definition for the method increment that makes the
test pass. And when you’ve done that, try and write a test for the message

37

Figure 4-10 Iceberg shows you the changes about to be committed.

Figure 4-11 Once you save your change, Iceberg shows you that.

4.9 Instance initialization method

decrement, then make it pass by implementing the method on the Counter
class.

Solution
Counter >> increment

count := count + 1

Counter >> decrement
count := count - 1

Figure 4-12 Class with more green tests.

Your tests should all pass (as shown in Figure 4-12). Again, this is a good mo-
ment to save your work. Saving at point where tests are green is always good
practice. To save your changes, you just have to commit them using Iceberg.

4.9 Instance initialization method

Right now the initial value of our counter is not set as the following expression
shows:
Counter new count
>>> nil

Let’s write a test that asserts that a newly created Counter instance has 0 as
the count:

39

A first tutorial: Developing a simple counter

CounterTest >> testInitialize
self assert: Counter new count equals: 0

This time the test will turn yellow, indicating a test failure - the test ran fine,
but the assertion did not pass. This is different to the red tests we’ve seen so
far, where the tests have failed because an error occurred (when a method has
not been implemented, for instance).

4.10 Define an initialize method

Now we have to write an initialization method that sets a default value of the
count instance variable. In Pharo, when creating a new object sending the
message new to a class, the newly created instance is sent a message initial-
ize. This gives the opportunity to the instance to initialize itself.

Therefore we will define an initializemethod that will correctly initialize
the default value of a counter.

Since the initializemessage is sent to a new instance, it means that the
initializemethod should be defined on the instance side, just like any method
that is sent to an instance of Counter (increment and decrement). The ini-
tializemethod is responsible for setting up the default values of instance
variables. And so, on the instance side of Counter, and in the initialization
protocol, write the following method (the body of this method is left blank. Fill
it in!).

Counter >> initialize
"set the initial value of count to 0"

"Your code here""

If you do this right, our testInitialize test will now pass. As always, save
your work before moving on to the next step.

4.11 Define a new instance creation method

We just discussed how the initializemethod is defined on the instance side
of our class, as it is responsible for altering an instance of Counter. Now let’s
take a look at defining a method on the class side of a class. Class methods will
be executed as a result of sending messages to the class itself, rather than to
instances of the class. To define the method on the class, we need to toggle the
Code Browser over to the class side by selecting Class side. Define a new in-
stance creation method called startingAt:. This method receives an integer
as an argument and returns a new instance of Counter with the count set to
the specified value.

40

4.12 Better object description

What do we do first? Why, we define a test of course:

TestCounter >> testCounterStartingAt5
self assert: (Counter startingAt: 5) count equals: 5

Here the message startingAt: is sent to the class Counter itself. Your imple-
mentation should look something like:

Counter class >> startingAt: anInteger
^ self new count: anInteger.

Here we see the notation for identifying a class sidemethod in our text: Class-
Name class >> methodName just means ”the class side method startingAt:
on the class Counter”.

What does self refer to here? As always, self refers to the object that the
method is defined in, and so here it refers to the Counter class itself. Let’s
write another test just to make sure that everything is working:

CounterTest >> testAlternateCreationMethod
self assert: ((Counter startingAt: 19) increment ; count) equals: 20

4.12 Better object description

When you inspect a Counter instance, either through the Debugger or through
opening an Inspector with Cmd-I on a Counter new expression, or even when
you just run a Print it on a Counter new, you will see a very simplistic repre-
sentation of your counter; it will just say 'a Counter':
Counter new
>>> a Counter

We would like a much richer representation, one that, for example, shows the
counter’s value. Implement the following method under the protocol print-
ing:
Counter >> printOn: aStream

super printOn: aStream.
aStream nextPutAll: ' with value: ', count printString.

Note the message printOn: is sent to any object when it is printed using Print
it (See Figure 4-13) or inspected in an Inspector. By implementing the method
printOn: on instances of Counter we can control how they are displayed, and
we override the default implementation defined in the Object class, which has
been doing all the work up until now. We’ll look at these ideas in more detail,
as well as learn more about streams and super, later in the book.

41

A first tutorial: Developing a simple counter

Figure 4-13 Counter instance better description.

In this case we’ll let you define a test case for this method. A tip: send the mes-
sage printString to Counter new to get its string representation, as gener-
ated by printOn:.
Counter new printString
>>> a Counter with value: 0

Now let’s save our code again, but this time on a remote git server.

4.13 Saving your code on a remote server

Up until now you saved your code on your local disc. We will now show how
you can save your code on a remote git repository such as the one you can cre-
ate on GitHub http://github.com or GitLab.

Create a project on the remote server

First you should create a project on your remote git server. Don’t put anything
in it! Things could get confusing. Name it something simple and obvious like
”Counter” or ”Pharo-Counter”. This is the place we’re going to send our Ice-
berg project to.

Add a remote repository in HTTPS access

In Iceberg, go to the Working Copy browser of your Counter repository by
double-clicking on the repository. Then click on the icon that looks like a box,
labeled Repository. This opens the Repository browser for the project, as
shown in Figure 4-14.

42

http://github.com
http://github.com

4.13 Saving your code on a remote server

Figure 4-14 A Repository browser opened on your project.

Then you just have to add a remote repository for the project, which is as sim-
ple as clicking the big plus icon marked Add remote. You will be asked to give
a name for the remote, which is just the label that git uses locally to identify
it, and a URL for the remote. You can use HTTPS access (a URL that starts with
https://github.com for GitHub), or SSH access (a URL that starts with git@github.com).
SSH will require you to set up your SSH agent on your machine with the correct
credentials (please consult your git remote provider for the details of how to
achieve this). HTTPS will require you to use your git token. See in Figures 4-15
and 4-16 for using HTTPS.

Push

As soon as you add a valid server address, Iceberg will show a small red indica-
tor on the Push button. This shows that you have changes in your local repos-
itory that have not yet been pushed to your remote repository. Al you have to
do is press the Push button; Iceberg will show you the commits that will be
pushed to the server as shown in Figure 4-17.

Now you really saved your code will be able to reload from another machine or
location. This skill will enable you to work remotely, and to share and collabo-
rate with others.

43

Figure 4-15 GitHub HTTPS address of our project.

Figure 4-16 Using the GitHub HTTPS address.

4.14 Conclusion

Figure 4-17 Commits sent to the remote repository.

4.14 Conclusion

In this tutorial, you learned how to define packages, classes, methods, and
tests. The workflow of programming that we chose for this first tutorial is
similar to most programming languages. However, in Pharo, smart and agile
developers use a different workflow: Test-Driven Development (TDD). We sug-
gest you redo this whole exercise by defining a test first, executing it, defining
a method in the debugger, and then repeating. Watch the second ”Counter”
video of the Pharo MOOC available at http://mooc.pharo.org to get a better
understanding of the workflow.

45

http://mooc.pharo.org
http://mooc.pharo.org

	About this book
	A word of presentation
	Structure of the book
	Fast track

	What you will learn
	Pharo version
	Growing software
	Syntax, blocks, and iterators

	Typographic conventions
	Videos
	Thanks

	Getting in touch with Pharo
	Pharo syntax in a nutshell
	Simplicity and elegance of messages
	Sending a message & the receiver
	Evaluating code and convention for showing results
	Other messages & return values
	The selector & unary messages
	A first keyword-based message
	Keyword-based messages with multiple arguments
	Binary messages

	Which message is executed first?
	Sending messages to classes
	Local variables and statement sequences
	About literal objects
	Sending multiple messages to the same object
	Blocks
	Control structures
	Methods
	Resources
	Conclusion

	Challenge yourself
	Challenge: Message identification
	Challenge: Literal objects
	Challenge: Kind of messages
	Challenge: Results
	Challenge: unneeded parentheses

	A first tutorial: Developing a simple counter
	Our use case
	Create a package and class
	Create a package
	Create a class

	Defining protocols and methods
	Create a method
	Adding a setter method
	Define a Test Class
	A typographic convention

	Saving your code as a git repository with Iceberg
	Open Iceberg
	Add and configure a project
	Add your package to the project
	Commit your changes
	Code saved

	Adding more messages
	Solution

	Instance initialization method
	Define an initialize method
	Define a new instance creation method
	Better object description
	Saving your code on a remote server
	Create a project on the remote server
	Add a remote repository in HTTPS access
	Push

	Conclusion

	Tests, tests and tests
	Writing a test in 2 minutes
	How do we declare a test in Pharo?

	Test Driven Design
	Why testing is important
	What makes a good test?
	SUnit by example
	Step 1: Create the test class
	Step 2: Write a test method
	Step 3: Run the test
	Step 4: Write more tests
	Step 5: Run all the tests
	Step 6: Alternative ways to execute tests
	Step 7: Looking at a bug
	Step 8: Interpret the results

	The SUnit cookbook
	About assert:equals:
	Other assertions
	Running a single test
	Running all the tests in a test class
	Must I subclass TestCase?

	Defining a fixture
	Step 1: Define the class and context
	Step 2: Setting a reusable context
	Step 3: Write some test methods

	Chapter summary

	Some collection katas with words
	Isogram
	About strings
	A solution using sets
	Hints
	Checking expression
	Adding a method to the class String

	Defining a test
	Testing several strings

	Some fun: Obtaining french isograms
	Pangrams
	Imagine a solution
	A first version
	A better version

	Handling alphabet
	Identifying missing letters
	About the return values of detectFirstMissingLetterFor:
	Detecting all the missing letters

	Palindrome as exercise
	Some possible implementations

	Conclusion

	About objects and classes
	Objects and classes
	Objects: Entities reacting to messages
	Turtles as an example
	Creating an object
	Sending messages
	Multiple instances: each with its own state.

	Messages and Methods
	Message: what should be executed
	Method: how we execute it

	An object is a protective entity
	An object protects its data
	With counters
	A class: blueprint or factory of objects
	Object structure
	Object behavior
	Self is the message receiver

	Class and instances are really different
	Conclusion

	Revisiting objects and classes
	A simple and naive file system
	Studying a first scenario
	Defining a class
	A first little analysis

	Printing a directory
	Adding files
	An example first
	A new class definition

	One message and multiple methods
	Objects: stepping back
	Examples of distribution of responsibilities
	File size
	Search

	Important points
	Modular thinking
	Sending a message is making a choice
	Polymorphic objects

	Distribution of responsibilities
	Procedural

	So far so good? Not fully!
	Conclusion

	Converter
	First a test
	Define a test method (and more)
	The class TemperaturConverter
	Converting from Fahrenheit to Celsius
	About floats
	Printing rounded results
	Building a map of degrees
	Adding logging behavior
	Discussion
	Conclusion

	An electronic wallet
	A first test
	Adding coins
	Looking at Bag
	Using a bag for a wallet
	More tests
	Testing money
	Checking to pay an amount
	Biggest coin
	Biggest below a value
	Improving the API
	Better string representation
	Easier addition
	Removing coins

	Coins for paying: First version
	Better heuristics
	Conclusion

	Crafting a simple embedded DSL with Pharo
	Getting started
	Create a test
	Define the class Die

	Rolling a die
	Creating another test
	Instance creation interface
	Defining a class method
	[Optional] Alternate instance creation definition

	First specification of a die handle
	Testing a die handle

	Defining the DieHandle class
	Improving programmer experience
	Rolling a die handle
	About Dice and DieHandle API
	About composition

	Role playing syntax
	About class extensions

	Handle's addition
	Conclusion

	Sending messages
	Sending a message is making a choice
	Negation: the not message
	Implementing not
	A first hint.
	A second hint.
	Studying the implementation

	Implementing disjunction
	When the receiver is true.
	When the receiver is false.

	About ifTrue:ifFalse: implementation
	Implementation.
	Optimisation.

	What is the point?
	Classes represent choices

	Conclusion

	Looking at inheritance
	Inheritance: Incremental definition and behavior reuse
	Inheritance
	Improving files/directories example design
	Objectives

	Transformation strategies
	Factoring out state
	Moving instance variable name to superclass
	Moving parent to superclass

	Factoring similar methods
	Sending a message and method lookup
	Inheritance properties

	Basic method overrides
	self-send messages and lookup create hooks
	Example
	Describe implementation

	Hook/Template explanations
	Essence of self and dispatch
	Solutions

	Instance variables vs. messages
	Conclusion

	Extending superclass behavior
	Revisiting printOn:
	Improving the situation
	Why self does not work!

	Extending superclass behavior using super
	Another example
	Really understanding super
	Solution

	Conclusion

	A little expression interpreter
	Starting with constant expressions and a test
	Negation
	Adding expression addition
	Multiplication
	Stepping back
	Messages and methods
	About common superclass
	Design corner: About the addition and multiplication model

	Negated as a message
	negated message for constants
	negated message for negations
	negated message for additions
	negated message for multiplications

	Annoying repetition
	Introducing the Expression class
	Class creation messages
	Better instance creation for constants
	Better instance creation for negations
	Better instance creation for additions
	Better instance creation for multiplications

	Introducing examples as class messages
	Printing
	A word about streams
	Printing constant
	Printing negation
	Printing addition
	Printing multiplication

	Revisiting the negated message for Negation
	Understanding method override

	Introducing the BinaryExpression class
	Creating a template and hook method

	What did we learn
	About hook methods
	Creating hooks is always good
	Avoid not documenting hooks

	Variables
	Some technical points
	Dictionaries
	Dynamic Arrays
	Pairs

	Back to variable expressions
	Non working approaches
	The solution: adding evaluateWith:

	Conclusion

	Little projects
	A basic LAN application
	Creating the class LNNode
	Exercise: Create a new package SimpleLAN
	Exercise: Create a Test class
	Exercise: Class creation
	Exercise: Accessors
	Exercise: Define the method hasNextNode

	Sending/receiving packets
	A little example.

	Better printString
	Creating the class LNPacket
	Exercise: defining class LNPacket
	Exercise: Adding isAddressedTo:
	Exercise: adding a printOn: method

	Creating the class LNWorkstation
	Exercise: Define LNWorkstation
	Exercise: Redefining the method accept:
	About good design.

	Exercise: Defining the method emit:

	Creating the class LNPrinter
	Illustrating scenario

	Simulating the LAN
	Conclusion

	Snakes and ladders
	Game rules
	Game possible run
	Potential objects and responsibilities
	Possible class candidates
	About representation

	About object-oriented design
	CRC cards
	Some heuristics
	Kind of data passed around
	Agility to adapt

	Let us get started
	A first real test
	Accessing one tile
	Adding players
	Avoid leaking implementation information
	About tools
	Displaying players
	Preparing to move players
	Finding the tile of a player
	Moving to another tile
	About our implementation

	Snakes and ladders
	A hierarchy of tiles
	Split Tile class in two
	Adding snake and ladder tiles

	New printing hook
	Using the new hook
	super does not have to be the first expression

	About hooks and templates
	Snake and ladder declaration
	Better tile protocol
	Another little improvement

	Active tile actions
	Alternating players
	Player turns and the current player
	How to find the logic of currentPlayer?
	Game end
	Alternate solution

	Playing one move
	Playing one game step

	Automated play
	Some final tests

	Variations
	Conclusion

	TinyChat: a fun and small chat client/server
	Objectives and architecture
	Loading Teapot
	Message representation
	Class TCMessage
	Accessor creation

	Instance initialisation
	Converting a message object into a string
	Building a message from a string
	Starting with the server
	Storing messages
	Basic operations on message list
	List of messages from a position
	Message formatting

	The Chat server
	TCServer class creation

	Server logic
	The client
	TinyChat class
	HTTP commands

	Client operations
	Client connection parameters
	User interface
	Now chatting
	Conclusion and ideas for future extensions

	Bibliography

