
CHA P T E R 4
A first tutorial: Developing a

simple counter

To start off in Pharo, let’s write a simple counter by following the steps given
below. In this exercise you will learn how to create packages, classes, methods,
instances, unit tests and more. This tutorial covers most of the important ac-
tions you will perform when developing in Pharo. You can also watch the com-
panion videos available in the Pharo MOOC at http://mooc.pharo.org, which
help illustrate this tutorial (they are called yy-Redo-xxx). We will also show
you how to save your code with git hosting services such as GitHub using Ice-
berg.

Note that the development flow promoted by this little tutorial is traditional in
the sense that you will define a package, a class, then define its instance vari-
ables, then define its methods, and then finally execute it. Now in Pharo, devel-
opers usually follow a different workflow called Extreme Test-Driven Develop-
ment: they execute an expression that raises an error. These errors are caught
by the Debugger and the developer codes directly in the debugger, allowing the
system to define instance variables and methods on the fly for them.

Once you finish this tutorial, and you feel more confident in Pharo, we strongly
suggest you do the exercise again using TDD: define and write a test, execute
it, write the code to make the test pass and loop. In Pharo you can also use Ex-
treme TDD: define and write a test, execute it, write the code in the debugger
to make the test pass. Extreme TDD is a super powerful approach. However,
you cannot really get the real feeling of it without actually doing it yourself.
There is another video in the Pharo mooc showing this powerful approach of
coding. We really urge you to have a look at it and practice.
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A first tutorial: Developing a simple counter

4.1 Our use case

Here is our use case: We want to be able to create a counter, increment it twice,
decrement it and check that its value is as expected. The following example
shows this in action, and will make a perfect unit test - you will define one
later.
| counter |
counter := Counter new.
counter increment; increment.
counter decrement.
counter count = 1

We will write all of the necessary classes and methods to support this example.

4.2 Create a package and class

In this part, you will create your first class. In Pharo, a class is defined in a
package, so we’ll need to create a package first to put the class in. The steps
are the same every time we create a class, so pay attention.

Create a package

Use the Browser to create a package (right-click in the package pane, select
New Package). The system will ask you for a name, write MyCounter. This new
package is then created, added to the package list, and selected by default.

Create a class

The lower pane of the Browser should now be open with a tab showing the tem-
plate for a class definition. To create a new class, you just need to edit this tem-
plate and compile the class.

Object << #MyClass
slots: {};
package: 'MyCounter'

There are three parts you might want to change:

• Superclass. This describes the superclass of the class you’re creating. It
defaults to Object, the least specialized of all classes in Pharo, which is
what we want for our new Counter class. This won’t always be the case:
often you’ll want to base a class on a more specific class.

• Class Name. Next, you should fill in the name of your class by replac-
ing #MyClass with #Counter. Take care that the name of the class starts
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4.2 Create a package and class

with a capital letter and that you do not remove the # sign in front of
#Counter. This is because we name our classes using a Symbol, a unique
string in Pharo which we write starting with a #.

• Slots. Then, you should fill in the names of the instance variables, also
called slots, of this class. We need only one instance variable called #count.

• Package. Here you specify the package name.

You should get the following class definition:

Object << #Counter
slots: { #count };
package: 'MyCounter'

We now have a class definition for the class Counter. To define it in our sys-
tem we still have to compile it - either through the context menu in the lower
panel, or the shortcut Cmd-S. The class Counter is now compiled and immedi-
ately added to the system. Figure 4-1 illustrates the resulting situation that the
browser should show.

Figure 4-1 Class created: It inherits from Object class and has one instance vari-
able named count.

The Pharo code critic tool will run automatically and shows some errors; don’t
worry about them for now, they’re mainly about our class not being used yet.
As we are disciplined developers, we will add a comment to our Counter class
by clicking the Comment pane and the Toggle Edit / View comment toggle.
You can write the following comment:
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A first tutorial: Developing a simple counter

`Counter` is a simple concrete class which supports incrementing and
decrementing.

Its API is
- `decrement` and `increment`
- `count`
Its creation message is `startAt:`

Comments are written in Microdown, a dialect of Markdown that should be
quite intuitive. They render nicely in the Browser. Again, accept these changes
either through the menu or by hitting Cmd-S. Figure 4-2 shows the class with
its comment.

Figure 4-2 Counter class has now a comment! Well done.

4.3 Defining protocols and methods

In this part you will use the Browser to learn how to add protocols and meth-
ods. The class we have defined has one instance variable named count, and
we’re going to use that variable to keep count. We’ll increment it, decrement it,
and show its current value. But in Pharo we need to remember three things:

1. Everything is an object

2. Instance variables are completely private to the object

3. The only way to interact with an object is by sending messages to it
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4.4 Create a method

And so there is no other mechanism to access our instance variable from out-
side of our counter than by sending a message to the object. What must do is
define a method that returns the value of the instance variable. Such methods
are called getter methods. So, let’s define an accessor method for our instance
variable count. A method is usually placed into a protocol. These protocols are
just a group of methods - they have no meaning in Pharo, but they do convey
important information to the readers of your class. Although protocols can
have any name, Pharo programmers follow certain conventions when naming
protocols. If you define a method and are not sure what protocol it should be
in, first take a look through existing code and see if you can find an appropriate
protocol that already exists.

4.4 Create a method

Now let us create the getter method for the instance variable count. Start by
selecting the class Counter in a Browser, and make sure you are editing the
instance side of the class (i.e., we define methods on instances of our class) by
selecting the instance side tab. Then define your method. Figure 4-3 shows the
method editor ready to define a method.

Figure 4-3 The method editor selected and ready to define a method.

As a general hint, double click at the end of or beginning of the text and start
typing your method: this automatically replaces the template. Write the fol-
lowing method definition:
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count
^ count

This defines a method called count, which takes no arguments and returns
the value of the instance variable count. Then choose accept in the menu to
compile the method. The method is automatically categorized in the protocol
accessing. Figure 4-4 shows the state of the system once the method is defined.

Figure 4-4 The method count defined in the protocol accessing.

You can now test your new method by typing and evaluating the next expres-
sion in a Playground:

Counter new count
>>> nil

This expression first creates a new instance of Counter, and then sends the
message count to it. It retrieves the current value of the counter. This should
return nil (the default value for non-initialized instance variables). After-
wards we will create instances with a reasonable default initialization value.

4.5 Adding a setter method

Complementing the getter method we find the setter method. These are used to
change the value of an instance variable from outside the object. For example,
the expression Counter new count: 7 first creates a new Counter instance
and then sets its value to 7 by sending it the message count: 7. Getters and
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4.6 Define a Test Class

setters are collectively referred to as accessor methods. This example shows a
setter method in action:
| c |
c := Counter new count: 7.
c count
>>> 7

The setter method does not currently exist, so as an exercise create the method
count: such that, when invoked on an instance of Counter, the instance vari-
able is set to the argument of the message. Test your method by evaluating the
example above in a Playground.

4.6 Define a Test Class

Writing tests - whether you do it before or after you write your code - isn’t re-
ally optional these days. A collection of well-written tests will support the evo-
lution of your application, and give you confidence that your program does
the things you expect it to do. Writing tests for your code is a good invest-
ment; test code is written once and executed a million times. For example, if
we turned the example above into a test we could have checked automatically
that our new setter method is working as expected.

Our test cases, written as methods, need to live inside a test class that inherits
from TestCase. So we define a class named CounterTest as follows:
TestCase << #CounterTest

package: 'MyCounter'

Now we can write our first test by defining a method. Test methods should
start with test to be automatically executed by the Test Runner or to get the
little clickable circle next to the method name that lets you run the test. Figure
4-5 shows the definition of the method testCountIsSetAndRead in the class
CounterTest.

Define the following method for our test case. It first creates an instance of a
Counter, sets its value and then verifies that the value has been set. The mes-
sage assert:equals: is a message implemented in our test class. It verifies a
fact (in this case that two objects are equal), and will fail the test if the fact isn’t
true.
CounterTest >> testCountIsSetAndRead

| c |
c := Counter new.
c count: 7.
self assert: c count equals: 7
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Figure 4-5 A first test is defined and it passes.

A typographic convention

Pharoers frequently use the notation ClassName >> methodName to identify
the class to which a method belongs. For example, the countmethod we wrote
above in our class Counter would be referred to as Counter >> count. Just
keep in mind that this is not exactly Pharo syntax, but more like a convenient
notation we use to indicate ”the instance method count which belongs to the
class Counter”.

From now on, when we show a method in this book, we will write the name of
the method in this form. Of course, when you actually type the code into the
browser, you don’t have to type the class name or the >>; instead, you just make
sure that the appropriate class is selected in the class pane. Verify that the
test passes by executing either pressing the circle icon in front of the method
(as shown by Figure 4-5) or using the Test Runner. As you now have your first
green test, it’s a good time to save your work.

4.7 Saving your code as a git repository with Iceberg

Saving your work in the Pharo image is good, but it’s not ideal for sharing
your work or collaborating with others. Much of modern software develop-
ment is mediated through git, an open-source version control system. Services
such as GitHub are built on top of git, providing places where developers can
work together building open source projects - like Pharo! Pharo works with
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4.7 Saving your code as a git repository with Iceberg

git through the tool Iceberg. This section will show you how to create a local
git repository for your code, commit your changes to it, and also push those
changes to a remote repository such as GitHub.

Open Iceberg

Open Iceberg through the Sourcesmenu, or by hitting Cmd-O,I.

Figure 4-6 Iceberg Repositories browser on a fresh image indicates that if you want
to version modifications to Pharo itself you will have to tell Iceberg where the Pharo
clone is located. But you do not care.

You should now see something similar to Figure 4-6 which shows the top-level
Iceberg pane. It shows the Pharo project, and a few other projects that also
come with your image, and indicates that it could not find a local repository for
them by showing ’Local repository missing’. You do not have to worry about
the Pharo project or having a local repository if you do not want to contribute
to Pharo. We’re going to create a new project of our own.

Add and configure a project

Press the button Add to create a new project. Select ’New Repository’ from the
left and you should see a configuration pane similar to the one in Figure 4-
7. Here we name our project, declare a directory on our local disk where the
project’s source should be saved, and also a subdirectory in the project itself
which will be used to keep the Pharo code in - conventionally this is the src
directory.

Add your package to the project

Once added, the IcebergWorking copy browser should show you an empty pane
because we still haven’t added any packages to our project. Click on the Add
package button and select the package MyCounter as shown by Figure 4-8.
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Figure 4-7 Add and create a project named MyCounter and with the src subdirec-
tory.

Figure 4-8 Selecting the Add package iconic button, add your package MyCounter
to your project.



4.8 Adding more messages

Commit your changes

Once your package is added, Iceberg shows you that there is uncommitted
code in the packages managed by your project, as shown in Figure 4-9. Press
the Commit button. Iceberg will show you all the changes that are about to be
saved (Figure 4-10). Enter a commit message and commit your changes.

Figure 4-9 Now Iceberg shows you that you did not commit your code.

Code saved

Once you have committed, Iceberg indicates that your system and local reposi-
tory are in sync.

Nicely done! We’ll take a look at how to push these changes to a remote reposi-
tory in a bit. But for now let’s get back to our Counter.

4.8 Adding more messages

We’re going to test-drive the following messages for our Counter class. First,
here’s a test for the incrementmessage:

CounterTest >> testIncrement
| c |
c := Counter new.
c count: 0 ; increment; increment.
self assert: c count equals: 2

Now you try it! Write a definition for the method increment that makes the
test pass. And when you’ve done that, try and write a test for the message
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Figure 4-10 Iceberg shows you the changes about to be committed.

Figure 4-11 Once you save your change, Iceberg shows you that.



4.9 Instance initialization method

decrement, then make it pass by implementing the method on the Counter
class.

Solution
Counter >> increment

count := count + 1

Counter >> decrement
count := count - 1

Figure 4-12 Class with more green tests.

Your tests should all pass (as shown in Figure 4-12). Again, this is a good mo-
ment to save your work. Saving at point where tests are green is always good
practice. To save your changes, you just have to commit them using Iceberg.

4.9 Instance initialization method

Right now the initial value of our counter is not set as the following expression
shows:
Counter new count
>>> nil

Let’s write a test that asserts that a newly created Counter instance has 0 as
the count:
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CounterTest >> testInitialize
self assert: Counter new count equals: 0

This time the test will turn yellow, indicating a test failure - the test ran fine,
but the assertion did not pass. This is different to the red tests we’ve seen so
far, where the tests have failed because an error occurred (when a method has
not been implemented, for instance).

4.10 Define an initialize method

Now we have to write an initialization method that sets a default value of the
count instance variable. In Pharo, when creating a new object sending the
message new to a class, the newly created instance is sent a message initial-
ize. This gives the opportunity to the instance to initialize itself.

Therefore we will define an initializemethod that will correctly initialize
the default value of a counter.

Since the initializemessage is sent to a new instance, it means that the
initializemethod should be defined on the instance side, just like any method
that is sent to an instance of Counter (increment and decrement). The ini-
tializemethod is responsible for setting up the default values of instance
variables. And so, on the instance side of Counter, and in the initialization
protocol, write the following method (the body of this method is left blank. Fill
it in!).

Counter >> initialize
"set the initial value of count to 0"

"Your code here""

If you do this right, our testInitialize test will now pass. As always, save
your work before moving on to the next step.

4.11 Define a new instance creation method

We just discussed how the initializemethod is defined on the instance side
of our class, as it is responsible for altering an instance of Counter. Now let’s
take a look at defining a method on the class side of a class. Class methods will
be executed as a result of sending messages to the class itself, rather than to
instances of the class. To define the method on the class, we need to toggle the
Code Browser over to the class side by selecting Class side. Define a new in-
stance creation method called startingAt:. This method receives an integer
as an argument and returns a new instance of Counter with the count set to
the specified value.
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4.12 Better object description

What do we do first? Why, we define a test of course:

TestCounter >> testCounterStartingAt5
self assert: (Counter startingAt: 5) count equals: 5

Here the message startingAt: is sent to the class Counter itself. Your imple-
mentation should look something like:

Counter class >> startingAt: anInteger
^ self new count: anInteger.

Here we see the notation for identifying a class sidemethod in our text: Class-
Name class >> methodName just means ”the class side method startingAt:
on the class Counter”.

What does self refer to here? As always, self refers to the object that the
method is defined in, and so here it refers to the Counter class itself. Let’s
write another test just to make sure that everything is working:

CounterTest >> testAlternateCreationMethod
self assert: ((Counter startingAt: 19) increment ; count) equals: 20

4.12 Better object description

When you inspect a Counter instance, either through the Debugger or through
opening an Inspector with Cmd-I on a Counter new expression, or even when
you just run a Print it on a Counter new, you will see a very simplistic repre-
sentation of your counter; it will just say 'a Counter':
Counter new
>>> a Counter

We would like a much richer representation, one that, for example, shows the
counter’s value. Implement the following method under the protocol print-
ing:
Counter >> printOn: aStream

super printOn: aStream.
aStream nextPutAll: ' with value: ', count printString.

Note the message printOn: is sent to any object when it is printed using Print
it (See Figure 4-13) or inspected in an Inspector. By implementing the method
printOn: on instances of Counter we can control how they are displayed, and
we override the default implementation defined in the Object class, which has
been doing all the work up until now. We’ll look at these ideas in more detail,
as well as learn more about streams and super, later in the book.
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Figure 4-13 Counter instance better description.

In this case we’ll let you define a test case for this method. A tip: send the mes-
sage printString to Counter new to get its string representation, as gener-
ated by printOn:.
Counter new printString
>>> a Counter with value: 0

Now let’s save our code again, but this time on a remote git server.

4.13 Saving your code on a remote server

Up until now you saved your code on your local disc. We will now show how
you can save your code on a remote git repository such as the one you can cre-
ate on GitHub http://github.com or GitLab.

Create a project on the remote server

First you should create a project on your remote git server. Don’t put anything
in it! Things could get confusing. Name it something simple and obvious like
”Counter” or ”Pharo-Counter”. This is the place we’re going to send our Ice-
berg project to.

Add a remote repository in HTTPS access

In Iceberg, go to the Working Copy browser of your Counter repository by
double-clicking on the repository. Then click on the icon that looks like a box,
labeled Repository. This opens the Repository browser for the project, as
shown in Figure 4-14.
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4.13 Saving your code on a remote server

Figure 4-14 A Repository browser opened on your project.

Then you just have to add a remote repository for the project, which is as sim-
ple as clicking the big plus icon marked Add remote. You will be asked to give
a name for the remote, which is just the label that git uses locally to identify
it, and a URL for the remote. You can use HTTPS access (a URL that starts with
https://github.com for GitHub), or SSH access (a URL that starts with git@github.com).
SSH will require you to set up your SSH agent on your machine with the correct
credentials (please consult your git remote provider for the details of how to
achieve this). HTTPS will require you to use your git token. See in Figures 4-15
and 4-16 for using HTTPS.

Push

As soon as you add a valid server address, Iceberg will show a small red indica-
tor on the Push button. This shows that you have changes in your local repos-
itory that have not yet been pushed to your remote repository. Al you have to
do is press the Push button; Iceberg will show you the commits that will be
pushed to the server as shown in Figure 4-17.

Now you really saved your code will be able to reload from another machine or
location. This skill will enable you to work remotely, and to share and collabo-
rate with others.
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Figure 4-15 GitHub HTTPS address of our project.

Figure 4-16 Using the GitHub HTTPS address.



4.14 Conclusion

Figure 4-17 Commits sent to the remote repository.

4.14 Conclusion

In this tutorial, you learned how to define packages, classes, methods, and
tests. The workflow of programming that we chose for this first tutorial is
similar to most programming languages. However, in Pharo, smart and agile
developers use a different workflow: Test-Driven Development (TDD). We sug-
gest you redo this whole exercise by defining a test first, executing it, defining
a method in the debugger, and then repeating. Watch the second ”Counter”
video of the Pharo MOOC available at http://mooc.pharo.org to get a better
understanding of the workflow.
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