
CHA P T E R 1
Finding the North with Compass

In this chapter, we will work on an alternative way to represent directions
and move computation in the 2D plan.

1.1 Existing situation

Computing new position based on a direction.

In the Robot implementation proposed in Chapter ??, we computed the new
position of a robot as follows:

computeNewPosition: anInteger
"Returns a point representing the location of the next move."

^ direction = #east
ifTrue: [self x + anInteger @ self y]
ifFalse: [direction = #west

ifTrue: [self x - anInteger @self y]
ifFalse: [direction = #north

ifTrue: [self x @ (self y + anInteger)]
ifFalse: [self x @ (self y - anInteger)].

]
]

This is not that nice.

Opposite direction

Similarly, we computed the opposite direction as follows:

1

Finding the North with Compass

computeOppositeDirection: aDirection
"Returns the opposite direction.
Note that this implementation should be rewritten taking into

account Compass' way of representing direction and their
computation'"

^ aDirection = #east
ifTrue: [#west]
ifFalse: [aDirection = #west

ifTrue: [#east]
ifFalse: [aDirection = #north

ifTrue: [#south]
ifFalse: [#north].

]
]

1.2 Representing directions

We propose that you define a little hierarchy with the class CpDirection as a
root and as subclasses the four main directions and based on it compute the
opposite and a new position in an adjacent position.

Note that by design we avoided directly referring to subclasses but use the
root as a factory of instances of its subclasses.

Make sure that the following tests pass and define new ones for each sce-
nario.
testSouthReturnOneRowDownPosition

| newPos |
newPos := CpDirection south * (3 @ 2).
self assert: newPos x equals: 3.
self assert: newPos y equals: 3.

testWestReturnLeftPosition

| newPos |
newPos := CpDirection west * (3 @ 2).
self assert: newPos x equals: 2.
self assert: newPos y equals: 2.

New position at a given distance

While the message * was given the next adjacent position, define tests and
introduce the message in: aDistance from: aPosition.

2

1.3 Introducing NorthWest, SouthEast, and friends

testEastInDistanceReturnRightPosition

| newPos |
newPos := CpDirection east in: 3 from: (3 @ 2).
self assert: newPos x equals: 6.
self assert: newPos y equals: 2.

1.3 Introducing NorthWest, SouthEast, and friends

Now that you have got your four positions and all your tests green. Introduce
the missing directions: NorthWest, NorthEast, SouthEast, and SouthWest.
And enjoy this design.

3

	Finding the North with Compass
	Existing situation
	Computing new position based on a direction.
	Opposite direction

	Representing directions
	New position at a given distance

	Introducing NorthWest, SouthEast, and friends

